Skip to main content
Log in

Observation of Non-Hermitian Quantum Correlation Criterion in Mesoscopic Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Although many quantum correlation criteria have been proposed successively in recent years, it is still an open question how to observe these criteria with the non–Hermitian terms in themselves. We propose an indirect scheme in this paper to observe non-Hermitian criteria and to judge whether or not quantum correlation exists in the system even though the expectation value measurement of non-Hermitian operator is invalid in quantum mechanics system. Our idea is to establish a critical state of mesoscopic oscillator under mean–field approximation, and the oscillator state will take place transition when the quantum correlation destroys the mean–field approximation. The non–Hermitian measurement will replace the position measurement in this process and it can be seen as a non–destructive detection. We give an example to explain this idea in a designed mesoscopic optomechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galindo, A., Martín-Delgado, M.A.: Rev. Mod. Phys 74, 347 (2002)

    Article  ADS  Google Scholar 

  2. Braunstein, S.L.: Rev. Mod. Phys 77, 513 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Clader, B.D.: Phys. Rev. A 90, 012324 (2014)

    Article  ADS  Google Scholar 

  4. Qin, W., Wang, C., Cao, Y., Long, G.L.: Phys. Rev. A 89, 062314 (2014)

    Article  ADS  Google Scholar 

  5. Kraus, B., Cirac, J.I.: Phys. Rev. Lett. 92, 013602 (2004)

    Article  ADS  Google Scholar 

  6. Ber, R., Kenneth, O., Reznik, B.: Phys. Rev. A 91, 052312 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wang, S., Hou, L.L., Chen, X.F., Xu, X.F.: Phys. Rev. A 91, 063832 (2015)

    Article  ADS  Google Scholar 

  8. Wang, T.Y., Yu, S., Zhang, Y.C., Gu, W.Y., Guo, H.: J. Phys. B: At. Mol. Opt. Phys 47, 215504 (2014)

    Article  ADS  Google Scholar 

  9. Simon, R.: Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  10. Duan, L.M.: Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  11. Adesso, G., Datta, A.: Phys. Rev. Lett. 105, 030501 (2010)

    Article  ADS  Google Scholar 

  12. Hillery, M., Zubairy, M.S.: Phys. Rev. A 74, 032333 (2006)

    Article  ADS  Google Scholar 

  13. 〈...〉 denotes taking the operator expectation value with respect to the quantum state.

  14. Sun, Q.Q., Nha, H., Zubairy, M.S.: Phys. Rev. A 80(R), 020101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hillery, M., Dung, H.T., Zheng, H.J.: Phys. Rev. A 81, 062322 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. Aspelmeyer, M., Kippenberg, T. J., Marquardt, F.: Rev. Mod. Phys. 86, 1391 (2015)

    Article  ADS  Google Scholar 

  17. Farace, A., Giovannetti, V.: Phys. Rev. A 86, 013820 (2012)

    Article  ADS  Google Scholar 

  18. Larson, J., Horsdal, M.: Phys. Rev. A 84(R), 021804 (2011)

    Article  ADS  Google Scholar 

  19. Mari, A., Farace, A., Didier, N., Giovannetti, V., Fazio, R.: Phys. Rev. Lett 111, 103605–5 (2013)

    Article  ADS  Google Scholar 

  20. Wang, X.: J. Phys. A 35, 165 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhang, F.Y., Yang, C.P., He, X.L., Song, H.S.: Phys. Lett. A 378, 1536 (2014)

    Article  ADS  Google Scholar 

  22. Mari, A., Eisert, J.: Phys. Rev. Lett. 108, 120602 (2012)

    Article  ADS  Google Scholar 

  23. Genes, C., Mari, A., Vitalii, D., Tombesi, S.: Adv. At. Mol. Opt. Phys. 57, 33 (2009)

    Article  ADS  Google Scholar 

  24. Wang, Y.D., Clerk, A.A.: Phys. Rev. Lett. 110, 253601 (2013)

    Article  ADS  Google Scholar 

  25. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  26. Giovannetti, V., Vitali, D.: Phys. Rev. A 63, 023812 (2001)

    Article  ADS  Google Scholar 

  27. Liu, Y.C., Shen, Y.F., Gong, Q.H., Xiao, Y.F.: Phys. Rev. A 89, 053821–8 (2014)

    Article  ADS  Google Scholar 

  28. Kale, Y.B., Mishra, S.R., Tiwari, V.B., Singh, S., Rawat, H.S.: Phys. Rev. A 91, 053852–8 (2015)

  29. Huang, S.M., Agarwal, G.S.: Phys. Rev. A 83, 023823 (2011)

    Article  ADS  Google Scholar 

  30. Seok, H., Buchmann, L.F., Wright, E.M., Meystre, P.: Phys. Rev. A 88, 063850 (2013)

    Article  ADS  Google Scholar 

  31. Gong, Z.R., Ian, H., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. A 80, 065801 (2009)

    Article  ADS  Google Scholar 

  32. Zhang, W.Z., Cheng, J., Zhou, L.: J. Phys. B: At. Mol. Opt. Phys. 48, 015502 (2015)

    Article  ADS  Google Scholar 

  33. Wei, J., Norman, E.: J. Math. Phys. 4, 575 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  34. Chen, L.B., Yang, W.: Laser Phys. Lett. 11, 105201 (2014)

    Article  ADS  Google Scholar 

  35. Wang, H.F., Wen, J.J., Zhu, A.D., Zhang, S., Yeon, K.H.: Phys. Lett. A 377, 2870 (2013)

    Article  ADS  Google Scholar 

  36. Kuzmak, A.R., Tkachuk, V.M.: Phys. Lett. A 378, 1469 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

All authors thank Jiong Cheng, Wenzhao Zhang and Yang Zhang for the useful discussion. This research was supported by the National Natural Science Foundation of China (Grant No 11175033, 11447135) and the Fundamental Research Funds for the Central Universities (DUT13LK05, DC201502080407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Appendices

Appendix A: Derivation Method of the Effective Hamiltonian

In this appendix, we show the derivation method corresponding to our effective Hamiltonian. The quantum Langevin equations in (7) can be rewritten in following form after completing a second quantization on the mode of oscillator and neglecting the drive:

$$ \begin{array}{lllll} &\dot{a}_{1}=(-\kappa_{1}+i{\Delta}_{1})a_{1}+ig^{\prime}_{l}a_{2}(b^{\dagger}+b)+\sqrt{2\kappa}a_{1}^{in}\\ &\dot{a}_{2}=(-\kappa_{1}+i{\Delta}_{2})a_{2}+ig^{\prime}_{l}a_{1}(b^{\dagger}+b)+\sqrt{2\kappa}a_{2}^{in}\\ &\dot{b}=(-\gamma-i\omega_{m})b+ig^{\prime}_{l}(a^{\dagger}_{1}a_{2}+a_{1}a^{\dagger}_{2})+\sqrt{2\gamma}b^{in}\\ &\dot{b}^{\dagger}=(-\gamma+i\omega_{m})b^{\dagger}-ig^{\prime}_{l}(a^{\dagger}_{1}a_{2}+a_{1}a^{\dagger}_{2})+\sqrt{2\gamma}b^{\dagger,in} \end{array} $$
(A1)

Here \(g^{\prime }_{l}=g_{l}/\sqrt {2}\), and we directly eliminate mode c because g l and g n are both much less than 1. b(b ) is the annihilation (creation) operator of the phonon, which satisfies \(\hat {q}=(b^{\dagger }+b)/\sqrt {2}\) and \(\hat {p}=i(b^{\dagger }-b)/\sqrt {2}\). Then the general solution of this equation set can be expressed as

$$ \begin{array}{lllll} &{a}_{1}(t)={a}_{1}(0)\exp(-\kappa_{1}+i{\Delta}_{1})t+\exp(-\kappa_{1}+i{\Delta}_{1})t{{\int}^{t}_{0}}\{ig^{\prime}_{l}a_{2}(\tau)[b^{\dagger}(\tau)+b(\tau)] \\&{\kern27pt} +\sqrt{2\kappa}a_{1}^{in}\}\exp(\kappa_{1}-i{\Delta}_{1})\tau d\tau\\ &{a}_{2}(t)={a}_{2}(0)\exp(-\kappa_{1}+i{\Delta}_{2})t+\exp(-\kappa_{1}+i{\Delta}_{2})t{{\int}^{t}_{0}}\{ig^{\prime}_{l}a_{1}(\tau)[b^{\dagger}(\tau)+b(\tau)] \\&{\kern27pt} +\sqrt{2\kappa}a_{2}^{in}\}\exp(\kappa_{1}-i{\Delta}_{2}\tau)d\tau\\ &b(t)=b(0)\exp(-\gamma-i\omega_{m})t+\exp(-\gamma-i\omega_{m})t{{\int}^{t}_{0}}\{ig^{\prime}_{l}[a^{\dagger}_{1}(\tau)a_{2}(\tau)+a_{1}(\tau)a^{\dagger}_{2}(\tau)] \\&{\kern27pt} +\sqrt{2\gamma}b^{in}\}\exp(\gamma+i\omega_{m})\tau d\tau\\ &b^{\dagger}(t)=b(0)^{\dagger}\exp(-\gamma+i\omega_{m})t+\exp(-\gamma+i\omega_{m})t{{\int}^{t}_{0}}\{-ig^{\prime}_{l}[a^{\dagger}_{1}(\tau)a_{2}(\tau)+a_{1}(\tau)a^{\dagger}_{2}(\tau)] \\&{\kern27pt} +\sqrt{2\gamma}b^{\dagger,in}\}\exp(\gamma-i\omega_{m})\tau d\tau \end{array} $$
(A2)

In our model, we set γ, |Δ i |≫g l , then the influence causing by optomechanical interaction can be regarded as perturbation for the whole system. In this case, the dynamics of a 1 and a 2 can be roughly treated as independent evolutions, i.e.,

$$ \begin{array}{lllll} &{a}_{1}(t)={a}_{1}(0)\exp(-\kappa_{1}+i{\Delta}_{1})t+A_{1}^{in}\\ &{a}_{2}(t)={a}_{2}(0)\exp(-\kappa_{1}+i{\Delta}_{2})t+A_{2}^{in} \end{array} $$
(A3)

Here \(A_{1}^{in}\) and \(A_{2}^{in}\) are modified noise terms. Using (A3), b(t) and b (t) can be obtained as follows:

$$ \begin{array}{lllll} b(t)=&b(0)\exp(-\gamma-i\omega_{m})t+\exp(-\gamma-i\omega_{m})t\\&{\times{\int}^{t}_{0}}\{ig^{\prime}_{l}[a^{\dagger}_{1}(0)a_{2}(0)\exp(-2\kappa_{1}t)+a_{1}(0)a^{\dagger}_{2}(0)\exp(-2\kappa_{1}t)]\\&+\sqrt{2\gamma}b^{in}\}\exp(\gamma+i\omega_{m})\tau d\tau\\ b^{\dagger}(t)=&b(0)^{\dagger}\exp(-\gamma+i\omega_{m})t+\exp(-\gamma+i\omega_{m})t\\&{\times{\int}^{t}_{0}}\{-ig^{\prime}_{l}[a^{\dagger}_{1}(0)a_{2}(0)\exp(-2\kappa_{1}t)+a_{1}(0)a^{\dagger}_{2}(0)\exp(-2\kappa_{1}t)]\\&+\sqrt{2\gamma}b^{\dagger,in}\}\exp(\gamma-i\omega_{m})\tau d\tau \end{array} $$
(A4)

Completing the integral in (A4) and setting Δ1≃Δ2≃Δ, we can obtain:

$$ \begin{array}{lllll} b(t)\simeq&b(0)\exp(-\gamma-i\omega_{m})t+\frac{ig_{1}a^{\dagger}_{1}(0)a_{2}(0)}{\gamma-2\kappa_{1}+i\omega_{m}}\exp(-2\kappa_{1} t) \\&+\frac{ig_{1}a_{1}(0)a_{2}^{\dagger}(0)}{\gamma-2\kappa_{1}+i\omega_{m}}\exp(-2\kappa_{1} t)+B^{in}\\ b^{\dagger}(t)\simeq&b^{\dagger}(0)\exp(-\gamma+i\omega_{m})t-\frac{ig_{1}a^{\dagger}_{1}(0)a_{2}(0)}{\gamma-2\kappa_{1}-i\omega_{m}}\exp(-2\kappa_{1}t)\\&-\frac{ig_{1}a_{1}(0)a_{2}^{\dagger}(0)}{\gamma-2\kappa_{1}-i\omega_{m}}\exp(-2\kappa_{1}t)+B^{\dagger,in} \end{array} $$
(A5)

Using the relationship of exp=(−2κ 1 t)= exp=(−κ 1 + iΔ−κ 1iΔ)t . Then (A5) can be simplified by using (A3) retroactively:

$$ \begin{array}{lllll} b(t)\simeq&b(0)\exp(-\gamma-i\omega_{m})t+\frac{ig_{1}a^{\dagger}_{1}a_{2}}{\gamma-2\kappa_{1}+i\omega_{m}}+\frac{ig_{1}a_{1}a_{2}^{\dagger}}{\gamma-2\kappa_{1}+i\omega_{m}}+B^{in}\\ b^{\dagger}(t)\simeq&b^{\dagger}(0)\exp(-\gamma+i\omega_{m})t-\frac{ig_{1}a^{\dagger}_{1}a_{2}}{\gamma-2\kappa_{1}-i\omega_{m}}-\frac{ig_{1}a_{1}a_{2}^{\dagger}}{\gamma-2\kappa_{1}-i\omega_{m}}+B^{\dagger,in} \end{array} $$
(A6)

In (A6), exp(−γi ω m )t is a high frequency term with fast decaying. Therefore, b(0) exp(−γi ω m )t and b (0) exp(−γ + i ω m )t can be neglected. Then b(t) and b (t) can be only expressed by a 1 and a 2. Substituting (A6) into (A1), the Langevin equations can be written as:

$$ \begin{array}{lllll} &\dot{a}_{1}=(-\kappa_{1}+i{\Delta})a_{1}+ig^{\prime}_{l}(\frac{2\omega_{m}g^{\prime}_{l}a^{\dagger}_{1}a_{2}a_{2}}{(\gamma-2\kappa)^{2}-{\omega^{2}_{m}}}+\frac{2\omega_{m}g^{\prime}_{l}a_{1}a^{\dagger}_{2}a_{2}}{(\gamma-2\kappa)^{2}-{\omega^{2}_{m}}})+A^{in}_{1}\\ &\dot{a}_{2}=(-\kappa_{1}+i{\Delta})a_{2}+ig^{\prime}_{l}(\frac{2\omega_{m}g^{\prime}_{l}a^{\dagger}_{1}a_{1}a_{2}}{(\gamma-2\kappa)^{2}-{\omega^{2}_{m}}}+\frac{2\omega_{m}g^{\prime}_{l}a_{1}a_{1}a^{\dagger}_{2}}{(\gamma-2\kappa)^{2}-{\omega^{2}_{m}}})+A^{in}_{2} \end{array} $$
(A7)

Based on (A7), we can finally get an effective Hamiltonian via a reverse derivation:

$$ \begin{array}{lllll} H_{eff}=&-{\Delta} a^{\dagger}_{1}a_{1}-{\Delta} a^{\dagger}_{2}a_{2}+\frac{2\omega_{m}{g_{l}^{2}}}{{\omega_{m}^{2}}-(\gamma-2\kappa)^{2}}a^{\dagger}_{1}a_{1}a^{\dagger}_{2}a_{2}\\&+\frac{\omega_{m}{g_{l}^{2}}}{2[{\omega_{m}^{2}}-(\gamma-2\kappa)^{2}]}[(a^{\dagger}_{1}a_{2})^{2}+H.c.] \end{array} $$
(A8)

(A8) is exactly equal to (12) in Section 4 if we ignore the shift term \(4g_{eff}a^{\dagger }_{1}a_{1}a^{\dagger }_{2}a_{2}\) and reconsider the drive term \(iE_{l}(a_{1}^{\dagger }-a_{1})+iE_{l}(a_{2}^{\dagger }-a_{2})\).

Appendix B: Simplification of Time Evolution Operator

In this appendix, we show the simplification processing corresponding to the time evolution operator. A general time evolution operator can be written as U = exp(−i H t). One can easily rewrite it in the form of \(H=i\frac {dU}{dt}U^{-1}\) with U(0) = I. Because the bosonic operators \(\{a^{\dagger }_{j},a_{j},\hat {I}\}\) in (16) will form a closed Lie algebra, Wei–Norman algebra requires that the time–dependent parameters in (17) should satisfy:

$$ \begin{array}{lllll} &\dot{g}_{1}+\dot{g}_{3}g_{4}-\dot{g}_{4}g_{3}=0\\ &\dot{g}_{3}=E_{l}e^{i\omega^{\prime}_{j}t}\\ &\dot{g}_{4}=E_{l}e^{-i\omega^{\prime}_{j}t} \end{array} $$
(B1)

with the initial conditions g 1(0) = g 2(0) = g 3(0)=0. The solutions of (B1) are the exactly same with (18) in Section 4.

When the translation operator \(\mathcal {D}(g_{12}(t))\) in (19) acting on an initial state |α〉 is considered and if α is real, one can get:

$$ \begin{array}{lllll} \mathcal{D}(g_{12}(t))\vert\alpha\rangle=\mathcal{D}(g_{12}(t))\mathcal{D}(\alpha)\vert 0\rangle=e^{\alpha\text{Im}[g_{12}(t)]}\vert \alpha+g_{12}(t)\rangle. \end{array} $$
(B2)

Now, the relative phase in (20) can be conveniently calculated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, F., Li, C. et al. Observation of Non-Hermitian Quantum Correlation Criterion in Mesoscopic Optomechanical System. Int J Theor Phys 55, 2097–2109 (2016). https://doi.org/10.1007/s10773-015-2849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2849-y

Keywords

Navigation