Skip to main content
Log in

Controlled Remote Information Concentration via Non-Maximally Entangled GHZ-Type States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a scheme of controlled remote quantum information concentration via non-maximally entangled GHZ-type states as quantum channel, which is the reverse process of the 1→3 optimal asymmetric economical phase-covariant telecloning. The necessary measurements and operations are given in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  2. Dieks, D.: Phys. Lett. A 92(6), 271–272 (1982)

    Article  ADS  Google Scholar 

  3. Bužuk, V., Hillery, M.: Phys. Rev. A 54(3), 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Scarnai, V., Lblisdir, S., Gisin, N.: Rev. Mod. Phys. 77(4), 1225–1256 (2005)

    Article  ADS  Google Scholar 

  5. Zhang, W., Rui, P.S., Zhang, Z.Y., Yang, Q.: New. J. Phys. 16, 083019 (2014)

    Article  ADS  Google Scholar 

  6. Gisin, N., Massar, S.: Phys. Rev. Lett. 79(11), 2153–2156 (1997)

    Article  ADS  Google Scholar 

  7. Bruss, D., Ekert, A., Macchiavello, C.: Phys. Rev. Lett. 81(12), 2598–2601 (1998)

    Article  ADS  Google Scholar 

  8. Galvao, E.F., Hardy, L.: Phys. Rev. A 62, 022301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Murao, M., Plenio, M.B., Vedral, V.: Phys. Rev. A 61, 032311 (2000)

    Article  ADS  Google Scholar 

  10. Mrurao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Phys. Rev. A 59 (1), 156–161 (1999)

    Article  ADS  Google Scholar 

  11. Hillery, M., Bužuk, V., Berthiaume, A.: Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lance, A.M., Symul, T., Bowen, P.W., et al.: Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  13. Zhang, Z.H., Shu, L., Mo, Z.W.: Quantum. Inf. Process 12(5), 1957–1967 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Ghiu, I.: Phys. Rev. A 67, 012323 (2003)

    Article  ADS  Google Scholar 

  15. Wang, X.W., Yang, G.J.: Phys. Rev. A 72, 032331 (2005)

    Article  Google Scholar 

  16. Wang, X.W., Yang, G.J.: Phys. Rev. A 79, 062315 (2009)

    Article  ADS  Google Scholar 

  17. Murao, M., Vedral, V.: Phys. Rev. Lett. 86(2), 353–355 (2001)

    Article  ADS  Google Scholar 

  18. Chen, Y.H., Yu, Y.F., Zhan, Z.M.: Chin. Phys. Lett. 23(12), 3158–3160 (2006)

    Article  ADS  Google Scholar 

  19. Wang, X.W., Zhang, D.Y., Yang, G.J., et al.: Phys. Rev. A 84, 042310 (2011)

    Article  ADS  Google Scholar 

  20. Deng, F.G., Li, X.H., Li, C.Y., et al.: Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  21. Bennett, C.H., Brassard, G., et al.: Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Zhang, W., Liu, Y.M., Zhang, Z.J., et al.: Opt. Commun. 283, 628–632 (2010)

    Article  ADS  Google Scholar 

  23. Yu, Y.F., Feng, J., Zhan, M.S.: Phys. Rev. A 68, 024303 (2003)

    Article  ADS  Google Scholar 

  24. Nie, Y.Y., Li, Y.H., Wang, Z.S.: Quantum. Inf. Process. 12(1), 438–447 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hou, K., Li, Y.B., Liu, G.H., et al.: J. Phys. A 44, 255304 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Quantum. Inf. Process 12(11), 3511–3525 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Int. J. Mod. Phys. B 27(26), 1350137 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wang, X.W., Tang, S.Q.: Open. J. Microphysics 3, 18–21 (2013)

    Article  ADS  Google Scholar 

  29. Luo, M.X., Deng, Y.: Quantum. Inf. Process 12(2), 773–784 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Augusiak, R., Horodecki, P.: Phys. Rev. A 73, 012318 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. Chen, Y.H., Zhang, D.Y., Gao, F., et al.: Chin. Phys. Lett. 26, 090304 (2009)

    Article  ADS  Google Scholar 

  32. Zhang, W., Xiong, K.W., Zuo, X.Q., et al.: Opt. Commun. 293, 166–171 (2013)

    Article  ADS  Google Scholar 

  33. Hsu, L.Y.: Phys. Rev. A 76, 032311 (2007)

    Article  ADS  Google Scholar 

  34. Wang, J.W., Shu, L., Mo, Z.W., et al.: Int. J. Theor. Phys. 53(8), 2867–2873 (2014)

    Article  MATH  Google Scholar 

  35. Guan, X.W., Chen, X.B., Yang, Y.X.: Int. J. Theor. Phys. 51(11), 3575–3586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bai, M.Q., Peng, J.Y., Mo, Z.W.: Quantum. Inf. Process 13(5), 1067–1083 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ma, Z.H., Chen, Z.H., Chen, J.L.: Phys. Rev. A 83, 062325 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewer for the constructive comments and suggestions. The work is supported by National Nature Science Foundation of China(Grant No.11071178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shu, L. & Mo, Z. Controlled Remote Information Concentration via Non-Maximally Entangled GHZ-Type States. Int J Theor Phys 55, 746–753 (2016). https://doi.org/10.1007/s10773-015-2712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2712-1

Keywords

Navigation