Skip to main content
Log in

Three-qubit Protocol to Purify Generalized Werner States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Generalizing the two-qubit purification method of Bennett et al. (Phys. Rev. Lett. 76, 722–725 1996), we present a three-qubit protocol, to purify partially entangled pairs of generalized Werner states, with application of controlled-not gates, projective measurements and Pauli rotations. The protocol is simple and recyclable and the fidelity of the purified states converge rapidly to 1, after a few cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Patel, A.: What is quantum computation?. arXiv:quant-ph/9909082v1 (1999)

  3. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sergienco, A.V., Jaeger, G.S.: Quantum information processing and precise optical measurement with entangled-photon pairs. Contempt. Phys. 44, 341–356 (1995)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleportation an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution. Proceedings of In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp 175–179 (1984)

  10. Bennett, C.H.: Quantum cryptography: uncertainty in the service of privacy. Science 257, 752–753 (1992)

    Article  ADS  Google Scholar 

  11. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    Article  ADS  Google Scholar 

  12. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  13. Schumacher, B.: Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  14. Jozsa, R., Schumacher, B.J.: A new proof of the quantum noiseless coding theorem. J. Mod. Opt. 41, 2343–2349 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Deng, G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  16. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret? Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  17. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  18. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Tyc, T., Ralph, T.C., Lam, P.K.: Continuous variable quantum state sharing via quantum disentanglement. Phys. Rev. A 71, 033814 (2005)

    Article  ADS  Google Scholar 

  19. Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  21. Sergey, N., Filippov, A., Melnikov, A., Ziman, M.: Dissociation and annihilation of multipartite entanglement structure in dissipative quantum dynamics. Phys. Rev. A 88, 062328 (2013)

    Article  ADS  Google Scholar 

  22. Pernice, A., Strunz, W.T.: Decoherence and the nature of system-environment correlations. Phys. Rev. A 84, 062121 (2011)

    Article  ADS  Google Scholar 

  23. Guhne, O., Bodoky, F., Blaauboer, M.: Multiparticle entanglement under the influence of decoherence. Phys. Rev. A 78, 060301 (2008)

    Article  ADS  Google Scholar 

  24. Das, S., Agarwal, G.S.: Decoherence effects in interacting qubits under the influence of various environments. J. Phys. B: At. Mol. Opt. Phys. 42, 205502 (2009)

    Article  ADS  Google Scholar 

  25. Kim, K.A., Miny, H., Dahm Oh, S., Ahn, D.: Decoherence effects on the entangled states in a noisy quantum channel. J. Korean Phys. Soc. 45(2), 273–280 (2004)

    Google Scholar 

  26. Hessian, H.A.: Quantum decoherence and entanglement induced by nonlinear dissipative environment. Prog. Theor. Phys. 127(4), 631–643 (2012)

    Article  ADS  MATH  Google Scholar 

  27. Jin-Hua, Z., Xiang-Ming, H.: Concentration of unknown atomic entangled states via entanglement swapping through Raman interaction. Chin. Phys. Lett. 25, 3142–3145 (2008)

    Article  ADS  Google Scholar 

  28. Bennett, C.H., Bernstein, H.J., Popesco, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  29. Sheng, Y.B., Feng, Z.F., Ou, Y., Qu, C.C., Zhou, L.: Arbitrary partially entangled three-electron state concentration with controlled-not gates. Chin. Phys. Lett. 31, 050303 (2014)

    Article  ADS  Google Scholar 

  30. Ren, B.C., Wang, T.J., Hua, M., Du, F.F., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Inf. Process. 13, 825–838 (2014)

  31. Liu, D., Cong, Y., Ma, W.: Single-qubit-assisted entanglement concentration of partially entangled multi-electron spin W states. Phys. Scr. 86, 045006 (2012)

    Article  ADS  Google Scholar 

  32. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)

    Article  ADS  Google Scholar 

  33. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  34. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  35. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  36. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 0272–0281 (2010)

    MathSciNet  Google Scholar 

  37. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  38. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  39. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  40. Du, F.F., Li, T., Ren, B.C., Wei, H.R., Deng, F.G.: Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1399–1405 (2012)

  41. Xiong, W., Ye, L.: Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 28, 2030–2037 (2011)

    Article  ADS  Google Scholar 

  42. Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776–1820 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement concentration for electrons with charge detection. Phys. Lett. A 373, 1823–1825 (2009)

    Article  ADS  MATH  Google Scholar 

  44. Sheng, Y.B., Zhou, L.,Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. QIP 12, 1885–1895 (2013)

  45. Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)

    Article  ADS  Google Scholar 

  46. Bennett, C.H., Brassard, G., Popesco, S., Schumacher, B., Smolin, J., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  47. Auer, A., Burkard, G.: Entanglement purication with the exchange interaction. arXiv:1401.5670v1 [quant-ph] (2014)

  48. Feng, X.L., Kwek, L.C., Oh, C.H.: Electronic entanglement puri?cation scheme enhanced by charge detections. Phys. Rev. A 71, 064301 (2005)

    Article  ADS  Google Scholar 

  49. Sheng, Y.B., Deng, F.G., Long, G.L.: Multipartite electronic entanglement puri?cation with charge detection. Phys. Lett. A 375, 396–400 (2010)

    Article  ADS  Google Scholar 

  50. Kruszynska, C., Miyake, A., Briegel, H., Dur, W.: Entanglement puri?cation protocols for all graph states. Phys. Rev. A 74, 052316 (2006)

    Article  ADS  Google Scholar 

  51. Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Multi-particle entanglement purification protocols. Phys. Rev. A 57, 4075 (1997)

    Article  ADS  Google Scholar 

  52. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  53. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  54. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement purification based on parametric down conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  55. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  56. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  57. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  58. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  59. Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  60. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  61. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093–4105 (2013)

    Article  ADS  Google Scholar 

  62. Cheong, Y.W., Lee, S.W., Lee, J., Lee, H.W.: Entanglement purification for high-dimensional multipartite systems. Phys. Rev. A 76, 042314 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  63. Sheng, Y.B., Deng, F.G., Zhao, B.K., Wang, T.J., Zhou, H.Y.: Multipartite entanglement purification with quantum nondemolition detectors. Eur. Phys. J. D 55, 235–242 (2009)

    Article  ADS  Google Scholar 

  64. Mundarain, D.F., Orszag, M.: Entanglement distillation with local common reservoirs. Phys. Rev. A 79, 022306 (2009)

    Article  ADS  Google Scholar 

  65. Dür, W., Cirac, J.I., Lewenstein, M., Bruss, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  66. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4216 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  67. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature?. Phys. Rev. Lett. 80, 5239–5242 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Sheng, Y.B., Zhou, L.: Generalized entanglement distillation. arXiv:1404.3594v1 [quant-ph] (2014)

  69. Dur, W., Cirac, J.I.: Classification of multi-qubit mixed states: separability and distillability properties. Phys. Rev. A 61, 042314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  70. Jing-Zhou, X., Jin-Bao, G., Wei, W., Yan-Kui, B., Feng-Li, Y.: Entanglement evolution of three-qubit mixed states in multipartite cavity reservoir systems. Chin. Phys. B 21, 080305 (2012)

    Article  Google Scholar 

  71. Li, T., Ren, B.C.,Wei, H.R., Hua,M., Deng, F.G.: High efficiency multipartite entanglement purification of electron-spin states with charge detection. Quantum Inf. Process. 12, 855–876 (2013)

  72. Pittenger, A.O., Rubin, M.H.: Note on separability of the Werner states in arbitrary dimensions. Phys. Rev. A 62, 032313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  73. Schack, R., Caves, C.M.: Explicit product ensembles for separable quantum states. J. Mod. Opt. 47, 387–399 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  74. Dür, W., Cirac, J.I., Tarrach, R.: Separability and distillability of multiparticle quantum systems. Phys. Rev. Lett. 83, 3562–3565 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jafarpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarpour, M., Ashrafpouri, F. Three-qubit Protocol to Purify Generalized Werner States. Int J Theor Phys 54, 1689–1697 (2015). https://doi.org/10.1007/s10773-014-2370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2370-8

Keywords

Navigation