Skip to main content
Log in

Bianchi Type-III Cosmological Models in Lyra’s Geometry in the Presence of Massive Scalar Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Spatially homogeneous and totally anisotropic Bianchi type-III cosmological models in the theory based on Lyra’s geometry in Gauss normal gauge in the presence of an attractive massive scalar field have been investigated. To get the deterministic model in terms of cosmic time, it has been assumed that the expansion scalar Θ in the models is proportional to the shear scalar σ. Two models, one with variable deceleration parameter and another with constant deceleration parameter have been discussed. To discuss the model with constant deceleration parameter, we have used the special law of variation for Hubble’s parameter proposed by (Berman Nuovo Cimento 74B, 184, 1983). The physical and geometrical properties of the models have been discussed. The energy conditions of the models are verified. It has been concluded that one of the universe models approaches to isotropy through the evolution of the universe, in some special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berman, M.S.: Nuovo Cimento 74B, 182 (1983)

    Article  ADS  Google Scholar 

  2. Hinshaw, G. et al.: Astrophys. J. Suppl. Ser. 180, 225 (2009)

    Article  ADS  Google Scholar 

  3. Jaffe, T.R. et al.: Astrophys. J. Lett. 629, L1 (2005)

    Article  ADS  Google Scholar 

  4. Misner, C.W.: Astrophys. J. 151, 431 (1968)

    Article  ADS  Google Scholar 

  5. Upadhaya, R.D., Dave, S.: Braz. J. Phys. 38, 4 (2008)

    Article  Google Scholar 

  6. Adhav, K.S. et al.: Int. J. Theor. Phys. 50, 339 (2011)

    Article  MathSciNet  Google Scholar 

  7. Bali, R., Jain, S.: Astrophys. Space Sci. 311, 401 (2007)

    Article  ADS  Google Scholar 

  8. Tripathy, S.K. et al.: Astrophys. Space Sci. 315, 105 (2008)

    Article  ADS  Google Scholar 

  9. Bali, R., Pareek, U.K.: Astrophys. Space Sci. 318, 237 (2008)

    Article  ADS  Google Scholar 

  10. Singh, J.K., Rani, S.: Int. J. Theor. Phys. 52, 3737 (2013)

  11. Singh, M.K., Ram, S.: Int. J. Theor. Phys. 53, 2198 (2014)

  12. Singh, J.K., Ram, S.: Astrophys. Space Sci. 246, 65 (1996)

    Article  ADS  Google Scholar 

  13. Lyra, G.: Math. Z. 54, 52 (1951)

    Article  MathSciNet  Google Scholar 

  14. Halford, W.D.: Aust. J. Phys. 23, 863 (1970)

    Article  ADS  Google Scholar 

  15. Singh, J.K.: Astrophys. Space Sci. 314, 361 (2008)

    Article  ADS  Google Scholar 

  16. Singh, J.K.: Astrophys. Space Sci. 317, 39 (2008)

    Article  ADS  Google Scholar 

  17. Singh, J.K., Sharma, N.K.: Afric. Rev. Phys. 8, 397 (2013)

    Google Scholar 

  18. Singh, J.K., Ram, S.: Nuovo Cim. B 112, 1157 (1997)

    ADS  Google Scholar 

  19. Singh, T., Singh, G.P.: Nuovo Cim. B 106, 617 (1991)

    Article  ADS  Google Scholar 

  20. Singh, T., Singh, G.P.: J. Math. Phys. 32, 2456 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. Singh, J.K., Sharma, N.K.: Int. J. Mod. Phys. A 25, 2525 (2010)

    Article  ADS  Google Scholar 

  22. Singh, J.K.: Int. J. Theor. Pyhs. 48, 905 (2009)

    Article  ADS  Google Scholar 

  23. Singh, J.K., Sharma, N.K.: Int. J. Theor. Phys. 53, 1375 (2014)

    Article  Google Scholar 

  24. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space Time , p. 117. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  25. Mohanty, G., Pradhan, B.D.: Int. J. Theor. Phys. 31, 151 (1992)

    Article  Google Scholar 

  26. Singh, J.K., Ram, S.: Astrophys. Space Sci. 236, 277 (1996)

    Article  ADS  Google Scholar 

  27. Singh, J.K.: Nuovo Cimento B 120, 1259 (2005)

    ADS  Google Scholar 

  28. Singh, J.K.: Int. J. Mod. Phys. A 23, 4925 (2008)

    Article  ADS  Google Scholar 

  29. Rahman, F. et al.: Bulg. J. Phys. 29, 91 (2002)

    Google Scholar 

  30. Venkateswarlu, R., Pavan Kumar, K.: Int. J. Theor. Phys. 49, 1894 (2010)

    Article  Google Scholar 

  31. Venkateswarlu, R., Satish, J.: Int. J. Theor. Phys. 53, 1879 (2014)

  32. Sen, D.K.: Z. Phys. 149, 311 (1957)

    Article  ADS  Google Scholar 

  33. Collins, C.B., Hawking, S.W.: Astrophys. J. 180, 317 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  34. Anderson, J.L.: Principles of Relativity Physics. Academic Press, New York (1967)

    Google Scholar 

  35. Thorne, K.S.: Astrophys. Space Sci. 148, 51 (1967)

    Google Scholar 

  36. Kantowski, R., Sachs, R.K.: J. Math. Phys. 7, 433 (1966)

    Article  ADS  Google Scholar 

  37. Kristian, J., Sachs, R.K.: Astrophys. J. 143, 379 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  38. Roy, S.R., Prakash, S.: Indian J. Phys. B 52(1), 47 (1978)

    ADS  Google Scholar 

  39. Roy, S.R., Banerjee, S.K.: Class. Quantum Gravity 14, 2845 (1997)

    Article  ADS  Google Scholar 

  40. Bali, R., Singh, G.: Astrophys. Space Sci. 134, 47–54 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  41. Ellis, G.F.R.: General Relativity and Cosmology. Academic Press, New York (1971)

    Google Scholar 

  42. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  43. Riess, A.G. et al.: Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  44. Perlmutter, S. et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  45. Tonry, J.L. et al.: Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  46. Clocchiatti, A. et al.: Astrophys. J. 642, 1 (2006)

    Article  ADS  Google Scholar 

  47. De Bernardis, P. et al.: Nat. 404, 955 (2002)

    Article  Google Scholar 

  48. Hanny, S. et al.: Astrophys. J. 545, L5 (2000)

    Article  ADS  Google Scholar 

  49. Bennet, C.L. et al.: Astrophys. J. Suppl. Ser. 148, 1 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Rani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J.K., Rani, S. Bianchi Type-III Cosmological Models in Lyra’s Geometry in the Presence of Massive Scalar Field. Int J Theor Phys 54, 545–560 (2015). https://doi.org/10.1007/s10773-014-2247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2247-x

Keywords

Navigation