Skip to main content
Log in

Stability of the Thin-Shell Schwarzschild-Ellis Wormhole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the stability regions of the thin-shells obtained by gluing the exterior Schwarzschild vacuum with two distinct classes of Ellis wormholes, one with zero and the other with nonzero total mass. Using the new concepts of thin-shell “mass” and of “external force” discovered recently by Garcia, Lobo and Visser, we shall apply their method to the explicit cases where some of the energy conditions in the bulk (on two sides) are violated. The stability regions are analyzed and the energetics is briefly discussed. Remarkably, we find that the stability zones are quite similar although the classes of Ellis wormholes are different. By the present examples, we confirm that the stability zones indicated by the force constraint (involving Φ and its derivatives) are more complete but restrictive than those from the mass constraint (not involving Φ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. There is a ruse here in the literature. Ellis takes ε=+2, and a real φ. Together, they contribute a positive sign before the source stress term, which cannot lead to his “drainhole”. Actually, ε=+2 should be taken with imaginary φ, or, alternatively, ε=−2 should be taken with real φ. In either case, there results a negative sign before the source stress term leading to energy condition violations necessary for drainhole or wormhole topology (in modern terminology). We take ε=−1, and real φ.

  2. It is very important to be careful with the choice of the volume measure. For instance, if we naïvely take the measure as exactly in the metric (2), viz., 4π(l 2+m 2)dl, and integrate, we shall end up with

    $$\varOmega_{NEC}^{bothsides} = \frac{1}{8\pi} \int _{ - \infty}^{\infty} \rho_{\phi} \cdot 4\pi r^{2} \bigl( l^{2} + m^{2} \bigr)dl = - \pi m, $$

    which does not reflect the zero total mass! The correct volume measure is 4πr 2 dr as used in the text.

  3. We thank an anonymous reviewer for suggesting this problem.

  4. The original solution is the Class IV Brans solution that can be rewritten in isotropic coordinates (t,r,θ,φ) in the Einstein conformally rescaled frame as [9, 27] 2=−e −2m/ρ dt 2+e 2m/ρ[ 2+ρ 2 2]. This is the Class II wormhole (or drainhole, as he termed it) found independently by Ellis [9]. We have cast it here in the MT form, as suggested.

References

  1. Garcia, N.M., Lobo, F.S.N., Visser, M.: Phys. Rev. D 86, 044026 (2012)

    ADS  Google Scholar 

  2. Visser, M.: Nucl. Phys. B 328, 203 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  3. Poisson, E., Visser, M.: Phys. Rev. D 52, 7318 (1995)

    ADS  MathSciNet  Google Scholar 

  4. Visser, M.: Phys. Lett. B 242, 24 (1990)

    Article  ADS  Google Scholar 

  5. Eiroa, E.F., Romero, G.E.: Gen. Relativ. Gravit. 36, 651 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Lobo, F.S.N., Crawford, P.: Class. Quantum Gravity 21, 391 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. American Institute of Physics, New York (1995). See the treatise for a comprehensive treatment

    Google Scholar 

  8. Ishak, M., Lake, K.: Phys. Rev. D 65, 044011 (2002)

    ADS  MathSciNet  Google Scholar 

  9. Ellis, H.G.: J. Math. Phys. 14, 104 (1973)

    Article  ADS  Google Scholar 

  10. Cattoen, C., Faber, T., Visser, M.: Class. Quantum Gravity 22, 4189 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Lobo, F.S.N.: Class. Quantum Gravity 23, 1525 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Lobo, F.S.N., Arellano, A.V.B.: Class. Quantum Gravity 24, 1069 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Visser, M., Wiltshire, D.L.: Class. Quantum Gravity 21, 1135 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Mazur, P.O., Mottola, E.: Proc. Natl. Acad. Sci. USA 101, 9545 (2004)

    Article  ADS  Google Scholar 

  15. Martin-Moruno, P., Garcia, N.M., Lobo, F.S.N., Visser, M.: J. Cosmol. Astropart. Phys. 1203, 034 (2012)

    Article  ADS  Google Scholar 

  16. Clément, G.: Int. J. Theor. Phys. 23, 335 (1984)

    Article  Google Scholar 

  17. Bhattacharya, A., Potapov, A.A.: Mod. Phys. Lett. A 25, 2399 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Nakajima, K., Asada, H.: Phys. Rev. D 85, 107501 (2012)

    ADS  Google Scholar 

  19. Perlick, V.: Phys. Rev. D 69, 064017 (2004)

    ADS  MathSciNet  Google Scholar 

  20. Dey, T.K., Sen, S.: Mod. Phys. Lett. A 23, 953 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Nandi, K.K., Zhang, Y.-Z., Zakharov, A.V.: Phys. Rev. D 74, 024020 (2006)

    ADS  Google Scholar 

  22. Abe, F.: Astrophys. J. 725, 787 (2010)

    Article  ADS  Google Scholar 

  23. Lynden-Bell, D., Katz, J., Bičák, J.: Phys. Rev. D 75, 024040 (2007). Erratum, ibid, D 75, 044901 (2007)

    ADS  MathSciNet  Google Scholar 

  24. Katz, J., Lynden-Bell, D., Bičák, J.: Class. Quantum Gravity 23, 9111 (2006)

    Article  Google Scholar 

  25. Morris, M.S., Thorne, K.S.: Am. J. Phys. 56, 395 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Nandi, K.K., Zhang, Y.-Z.: Phys. Rev. D 70, 044040 (2004)

    ADS  MathSciNet  Google Scholar 

  27. Nandi, K.K., Bhattacharjee, B., Alam, S.M.K., Evans, J.: Phys. Rev. D 57, 823 (1998)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by an internal grant of M. Akmullah Bashkir State Pedagogical University on natural sciences field.

We thank the anonymous referees for their insightful comments that helped us improve the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramil Izmailov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaybullina, A., Akhtaryanova, G., Mingazova, R. et al. Stability of the Thin-Shell Schwarzschild-Ellis Wormhole. Int J Theor Phys 53, 1590–1600 (2014). https://doi.org/10.1007/s10773-013-1957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1957-9

Keywords

Navigation