Skip to main content
Log in

Some Exact Relativistic Models of Electrically Charged Self-bound Stars

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In continuation of recent work done by the present authors (Int. J. Theor. Phys. 2013, doi:10.1007/s10773-013-1538-y, hereafter paper I) some new exact families of static spherically symmetric perfect fluid solution of Einstein–Maxwell gravitational field equations are presented. These solutions and the corresponding equations of state, presented in parametric form, may be astrophysically significant in constructing relativistic stellar models of electrically charged self-bound stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fatema, S., Murad, H.M.: An exact family of Einstein–Maxwell Wyman–Adler solution in general relativity. Int. J. Theor. Phys. (2013). doi:10.1007/s10773-013-1538-y

    MathSciNet  MATH  Google Scholar 

  2. Patel, L.K., Pandya, B.M.: A Reissner–Nordström interior solution. Acta Phys. Hung., Heavy Ion Phys. 60, 57–65 (1986). doi:10.1007/BF03157418

    MathSciNet  Google Scholar 

  3. Patel, L.K., Koppar, S.S.: A charged analogue of the Vaidya–Tikekar solution. Aust. J. Phys. 40, 441–447 (1987). doi:10.1071/PH870441

    MathSciNet  ADS  Google Scholar 

  4. Koppar, S.S., Patel, L.K., Singh, T.: On relativistic charged fluid spheres. Acta Phys. Hung., Heavy Ion Phys. 69, 53–62 (1991). doi:10.1007/BF03054133

    MathSciNet  Google Scholar 

  5. Patel, L.K., Tikekar, R., Sabu, M.C.: Exact interior solutions for charged fluid spheres. Gen. Relativ. Gravit. 29, 489–497 (1997). doi:10.1023/A:1018886816863

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Sharma, R., Mukherjee, S., Maharaj, S.D.: General solution for a class of static charged spheres. Gen. Relativ. Gravit. 33, 999–1009 (2001). doi:10.1023/A:1010272130226

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Komathiraj, K., Maharaj, S.D.: Tikekar superdense stars in electric fields. J. Math. Phys. 48, 042501 (2007). doi:10.1063/1.2716204

    Article  MathSciNet  ADS  Google Scholar 

  8. Lattimer, J.M., Prakash, M.: Neutron star structure and the equation of state. Astrophys. J. 550, 426–442 (2001). doi:10.1086/319702

    Article  ADS  Google Scholar 

  9. Lattimer, J.M.: The structure of strange quark matter and neutron stars. J. Phys. G, Nucl. Part. Phys. 30, S479–S486 (2004). doi:10.1088/0954-3899/30/1/056

    Article  ADS  Google Scholar 

  10. Lattimer, J.M., Prakash, M.: Ultimate energy density of observable cold baryonic matter. Phys. Rev. Lett. 94, 111101 (2005). doi:10.1103/PhysRevLett.94.111101

    Article  ADS  Google Scholar 

  11. Delgaty, M.S.R., Lake, K.: Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput. Phys. Commun. 115, 395–415 (1998). doi:10.1016/S0010-4655(98)00130-1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Negreiros, R.P., Weber, F., Malheiro, M., Vladimir, U.: Electrically charged strange quark stars. Phys. Rev. D 80, 083006 (2009). doi:10.1103/PhysRevD.80.083006

    Article  ADS  Google Scholar 

  13. Komathiraj, K., Maharaj, S.D.: Analytical models of quark stars. Int. J. Mod. Phys. D 16, 1803–1811 (2011). doi:10.1142/S0218271807011103

    Article  MathSciNet  ADS  Google Scholar 

  14. Mak, M.K., Harko, T.: Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D 13, 149–156 (2004). doi:10.1142/S0218271804004451

    Article  ADS  MATH  Google Scholar 

  15. Rahaman, F., Sharma, R., Ray, S., Maulick, R., Karar, I.: Strange stars in Krori–Barua space-time. Eur. Phys. J. C 72, 2071 (2012). doi:10.1140/epjc/s10052-012-2071-5

    Article  ADS  Google Scholar 

  16. Sharma, R., Karmakar, S., Mukherjee, S.: Maximum mass of a class of cold compact stars. Int. J. Mod. Phys. D 15, 405–418 (2006). doi:10.1142/S0218271806008012

    Article  ADS  MATH  Google Scholar 

  17. Tikekar, R., Jotania, K.: On relativistic models of strange stars. Pramana J. Phys. 68, 397–406 (2007)

    Article  ADS  Google Scholar 

  18. Chattopadhyay, P.K., Deb, R., Paul, B.C.: Relativistic solution for a class of static compact charged star in pseudo-spheroidal spacetime. Int. J. Mod. Phys. D 21, 1250071 (2012). doi:10.1142/S021827181250071X

    Article  MathSciNet  ADS  Google Scholar 

  19. Kalam, M., Usmani, A., Rahaman, F., Hossein, S.M., Karar, I., Sharma, R.: A relativistic model for strange quark stars. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-013-1629-9

    Google Scholar 

  20. Durgapal, M.C.: A class of new exact solutions in general relativity. J. Phys. A, Math. Gen. 15, 2637–2644 (1982). doi:10.1088/0305-4470/15/8/039

    Article  MathSciNet  ADS  Google Scholar 

  21. Mak, M.K., Fung, P.C.W.: Charged static fluid spheres in general relativity. Nuovo Cimento B 110, 897–903 (1995). doi:10.1007/BF02722858

    Article  MathSciNet  ADS  Google Scholar 

  22. Mak, M.K., Fung, P.C.W., Harko, T.: New classes of interior solutions to Einstein–Maxwell equations in spherical symmetry. Nuovo Cimento B 111, 1461–1464 (1996). doi:10.1007/BF02741485

    Article  MathSciNet  ADS  Google Scholar 

  23. Ishak, M., Chamandy, L., Neary, N., Lake, K.: Exact solutions with w modes. Phys. Rev. D 64, 024005 (2001). doi:10.1103/PhysRevD.64.024005

    Article  ADS  Google Scholar 

  24. Lake, K.: All static spherically symmetric perfect-fluid solutions of Einstein’s equations. Phys. Rev. D 67, 104015 (2003). doi:10.1103/PhysRevD.67.104015

    Article  MathSciNet  ADS  Google Scholar 

  25. Maurya, S.K., Gupta, Y.K.: On a family of well behaved perfect fluid balls as astrophysical objects in general relativity. Astrophys. Space Sci. 334, 145–154 (2011). doi:10.1007/s10509-011-0705-y

    Article  ADS  MATH  Google Scholar 

  26. Tolman, R.C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939). doi:10.1103/PhysRev.55.364

    Article  ADS  Google Scholar 

  27. Pant, N., Rajasekhara, S.: Variety of well behaved parametric classes of relativistic charged fluid spheres in general relativity. Astrophys. Space Sci. 333, 161–168 (2011). doi:10.1007/s10509-011-0607-z

    Article  ADS  MATH  Google Scholar 

  28. Pant, N., Negi, P.S.: Variety of well behaved exact solutions of Einstein–Maxwell field equations strange quark stars, neutron stars and pulsars. Astrophys. Space Sci. 338, 163–169 (2012). doi:10.1007/s10509-011-0919-z

    Article  ADS  Google Scholar 

  29. Wyman, M.: Radially symmetric distribution of matter. Phys. Rev. 75, 1930–1936 (1949). doi:10.1103/PhysRev.75.1930

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Adler, R.J.: A fluid sphere in general relativity. J. Math. Phys. 15, 727–729 (1974). doi:10.1063/1.1666717

    Article  ADS  Google Scholar 

  31. Adams, R.C., Warburton, R.D., Cohen, J.M.: Analytic stellar models in general relativity. Astrophys. J. 200, 263–268 (1975). doi:10.1086/153627

    Article  ADS  Google Scholar 

  32. Kuchowicz, B.: A physically realistic sphere of perfect fluid to serve as a model of neutron stars. Astrophys. Space Sci. 33, L13–L14 (1975). doi:10.1007/BF00646028

    Article  MathSciNet  ADS  Google Scholar 

  33. Pant, M.J., Tewari, B.C.: Well behaved class of charge analogue of Adler’s relativistic exact solution. J. Mod. Phys. 2, 481–487 (2011). doi:10.4236/jmp.2011.26058

    Google Scholar 

  34. Pant, N., Tewari, B.C., Fuloria, P.: Well behaved parametric class of exact solutions of Einstein–Maxwell field equations in general relativity. J. Mod. Phys. 2, 1538–1543 (2011). doi:10.4236/jmp.2011.212186

    Article  Google Scholar 

  35. Pant, N., Faruqi, S.: Relativistic modeling of a superdense star containing a charged perfect fluid. Gravit. Cosmol. 18, 204–210 (2012). doi:10.1134/S0202289312030073

    Article  ADS  MATH  Google Scholar 

  36. Murad, H.M.: A new well behaved class of charge analogue of Adler’s relativistic exact solution. Astrophys. Space Sci. 343, 187–194 (2013). doi:10.1007/s10509-012-1258-4

    Article  ADS  Google Scholar 

  37. Heintzmann, H.: New exact static solutions of Einsteins field equations. Z. Phys. 228, 489–493 (1969). doi:10.1007/BF01558346

    Article  MathSciNet  ADS  Google Scholar 

  38. Korkina, M.P.: Static configuration with an ultrarelativistic equation of state at the center. Sov. Phys. J. 24, 468–470 (1981). doi:10.1007/BF00898413

    Article  Google Scholar 

  39. Pant, N., Mehta, R.N., Pant, M.J.: Well behaved class of charge analogue of Heintzmann’s relativistic exact solution. Astrophys. Space Sci. 332, 473–479 (2011). doi:10.1007/s10509-010-0509-5

    Article  ADS  MATH  Google Scholar 

  40. Pant, N., Maurya, S.K.: Relativistic modeling of charged super-dense star with Einstein–Maxwell equations in general relativity. Appl. Math. Comput. 218, 8260–8268 (2012). doi:10.1016/j.amc.2012.01.044

    Article  MathSciNet  MATH  Google Scholar 

  41. Pant, N.: Well behaved parametric class of relativistic charged fluid ball in general relativity. Astrophys. Space Sci. 332, 403–408 (2011). doi:10.1007/s10509-010-0521-9

    Article  ADS  MATH  Google Scholar 

  42. Mehta, R.N., Pant, N., Mahto, D., Jha, J.S.: A well-behaved class of charged analogue of Durgapal solution. Astrophys. Space Sci. 343, 653–660 (2013). doi:10.1007/s10509-012-1289-x

    Article  ADS  Google Scholar 

  43. Murad, H.M., Fatema, S.: A family of well behaved charge analogues of Durgapal’s perfect fluid exact solution in general relativity. Astrophys. Space Sci. 343, 587–597 (2013). doi:10.1007/s10509-012-1277-1

    Article  ADS  Google Scholar 

  44. Maurya, S.K., Gupta, Y.K., Pratibha: Regular and well-behaved relativistic charged superdense star models. Int. J. Mod. Phys. D 20, 1289–1300 (2011). doi:10.1142/S0218271811019414

    Article  ADS  MATH  Google Scholar 

  45. Faruqi, S., Pant, N.: Well-behaved relativistic charged super-dense star models. Astrophys. Space Sci. 341, 485–490 (2012). doi:10.1007/s10509-012-1132-4

    Article  ADS  Google Scholar 

  46. Orlyansky, O.Y.: Singularity-free static fluid spheres in general relativity. J. Math. Phys. 38, 5301–5304 (1997). doi:10.1063/1.531943

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Gupta, Y.K., Maurya, S.K.: A class of regular and well behaved relativistic super-dense star models. Astrophys. Space Sci. 332, 155–162 (2011). doi:10.1007/s10509-010-0503-y

    Article  ADS  MATH  Google Scholar 

  48. Fuloria, P., Tewari, B.C., Joshi, B.C.: Well behaved class of charge analogue of Durgapal’s relativistic exact solution. J. Mod. Phys. 2, 1156–1160 (2011). doi:10.4236/jmp.2011.210143

    Article  Google Scholar 

  49. Fuloria, P., Tewari, B.C.: A family of charge analogue of Durgapal solution. Astrophys. Space Sci. 341, 469–475 (2012). doi:10.1007/s10509-012-1105-7

    Article  ADS  Google Scholar 

  50. Murad, H.M., Fatema, S.: A family of well behaved charge analogues of Durgapal’s perfect fluid exact solution in general relativity II. Astrophys. Space Sci. 344, 69–78 (2013). doi:10.1007/s10509-012-1320-2

    Article  ADS  Google Scholar 

  51. Pant, N.: Some new exact solutions with finite central parameters and uniform radial motion of sound. Astrophys. Space Sci. 331, 633–644 (2011). doi:10.1007/s10509-010-0453-4

    Article  ADS  MATH  Google Scholar 

  52. Maurya, S.K., Gupta, Y.K.: A family of well behaved charge analogues of a well behaved neutral solution in general relativity. Astrophys. Space Sci. 332, 481–490 (2011). doi:10.1007/s10509-010-0541-5

    Article  ADS  Google Scholar 

  53. Pant, N.: New class of well behaved exact solutions of relativistic charged white-dwarf star with perfect fluid. Astrophys. Space Sci. 334, 267–271 (2011). doi:10.1007/s10509-011-0720-z

    Article  ADS  MATH  Google Scholar 

  54. Pant, N.: New class of well behaved exact solutions for static charged neutron-star with perfect fluid. Astrophys. Space Sci. 337, 147–150 (2012). doi:10.1007/s10509-011-0809-4

    Article  ADS  MATH  Google Scholar 

  55. Maurya, S.K., Gupta, Y.K., Pratibha: A class of charged relativistic superdense star models. Int. J. Theor. Phys. 51, 943–953 (2012). doi:10.1007/s10773-011-0968-7

    Article  MATH  Google Scholar 

  56. Maurya, S.K., Gupta, Y.K.: Extremization of mass of charged superdense star models describe by Durgapal type space-time metric. Astrophys. Space Sci. 334, 301–310 (2011). doi:10.1007/s10509-011-0736-4

    Article  ADS  MATH  Google Scholar 

  57. Maurya, S.K., Gupta, Y.K.: A new family of polynomial solutions for charged fluid spheres. Nonlinear Anal., Real World Appl. 13, 677–685 (2012). doi:10.1016/j.nonrwa.2011.08.008

    Article  MathSciNet  MATH  Google Scholar 

  58. Kuchowicz, B.: Differential conditions for physically meaningful fluid spheres in general relativity. Phys. Lett. A 38, 369–370 (1972). doi:10.1016/0375-9601(72)90164-8

    Article  ADS  Google Scholar 

  59. Buchdahl, H.A.: Regular general relativistic charged fluid spheres. Acta Phys. Pol. B 10, 673–685 (1979)

    MathSciNet  Google Scholar 

  60. Böhmer, C.G., Harko, T.: Minimum mass radius ratio for charged gravitational objects. Gen. Relativ. Gravit. 39, 757–775 (2007). doi:10.1007/s10714-007-0417-3

    Article  ADS  MATH  Google Scholar 

  61. Andréasson, H.: Sharp bounds on the critical stability radius for relativistic charged spheres. Commun. Math. Phys. 288, 715–730 (2009). doi:10.1007/s00220-008-0690-3

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Authors acknowledge their sincere gratitude to the reviewers for pointing out the errors and making relevant constructive suggestions that help authors improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Murad.

Additional information

This work is respectfully dedicated to the memory of our esteemed Professor J.N. Islam (1939–2013). With his death, we have lost a creative, thoughtful and an active member of the relativity-and-gravitation community.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murad, M.H., Fatema, S. Some Exact Relativistic Models of Electrically Charged Self-bound Stars. Int J Theor Phys 52, 4342–4359 (2013). https://doi.org/10.1007/s10773-013-1752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1752-7

Keywords

Navigation