Skip to main content
Log in

A Tachyonic Scalar Field with Mutually Interacting Components

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the tachyonic cosmological potential V(ϕ) in two different cases of the quasi-exponential expansion of universe and discuss various forms of interaction between the two components—matter and the cosmological constant—of the tachyonic scalar field, which lead to the viable solutions of their respective energy densities. The distinction among the interaction forms is shown to appear in the O m (x) diagnostic. Further, the role of the high- and low-redshift observations of the Hubble parameter is discussed to determine the proportionality constants and hence the correct form of matter–cosmological constant interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Even though the present supernovae observations [1, 2] seem to indicate an accelerated expansion of the universe, yet the exact form of the expansion has still not been unambiguously ascertained. It is possible that we have already entered another inflationary phase.

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Spergel, D., et al.: Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  4. Komatsu, E., et al.: Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  5. Blake, C., Glazebrook, K.: Astrophys. J. 594, 665 (2003)

    Article  ADS  Google Scholar 

  6. Seo, H., Eisenstein, D.J.: Astrophys. J. 598, 720 (2003)

    Article  ADS  Google Scholar 

  7. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998). arXiv:astro-ph/9708069v2

    Article  ADS  Google Scholar 

  8. Liddle, A.R., Scherrer, R.J.: Phys. Rev. D 59, 023509 (1999)

    Article  ADS  Google Scholar 

  9. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  10. Sen, A.: J. High Energy Phys. 0204, 048 (2002). arXiv:hep-th/0203211; arXiv:hep-th/0203265v1; arXiv:hep-th/0204143v4

    Article  ADS  Google Scholar 

  11. Padmanabhan, T., Roy Choudhury, T.: Phys. Rev. D 66, 081301 (2002)

    Article  ADS  Google Scholar 

  12. Bagla, J.S., Jassal, H.K., Padmanabhan, T.: Phys. Rev. D 67, 063504 (2003). arXiv:astro-ph/0212198v2

    Article  ADS  Google Scholar 

  13. Padmanabhan, T.: Phys. Rev. D 66, 021301 (2002). arXiv:hep-th/0204150v1

    Article  ADS  Google Scholar 

  14. Amendola, L.: Phys. Rev. D 62, 043511 (2000)

    Article  ADS  Google Scholar 

  15. Zimdahl, W., Pavon, D.: Phys. Lett. B 521, 133 (2011)

    ADS  Google Scholar 

  16. Verma, M.M.: Astrophys. Space Sci. 330, 101 (2010)

    Article  ADS  MATH  Google Scholar 

  17. Verma, M.M.: In: Texas Symposium on Relativistic Astrophysics—TEXAS 2010, 6–10 December 2010, Heidelberg, Germany (2010)

    Google Scholar 

  18. Chimento, L.P.: Phys. Rev. D 81, 043525 (2010). arXiv:0911.5687v2

    Article  ADS  Google Scholar 

  19. He, J.H., Wang, B., Zhang, P.: Phys. Rev. D 80, 063530 (2009). arXiv:0906.0677v2

    Article  ADS  Google Scholar 

  20. Wang, B., Gong, Y.G., Abdalla, E.: Phys. Lett. B 624, 141 (2005)

    Article  ADS  Google Scholar 

  21. Campo, S.D., Herrera, R., Pavon, D.: Int. J. Mod. Phys. D 20(4), 561 (2011) arXiv:1103.5492v1 [astro-ph]

    Article  ADS  MATH  Google Scholar 

  22. Wei, H., Cai, R.G.: Phys. Rev. D 71, 043504 (2005). arxiv:hep-th/0412045v3

    Article  ADS  Google Scholar 

  23. Wei, H., Zhang, S.N.: Phys. Lett. B 644, 7 (2007). arXiv:astro-ph/0609597v3

    Article  ADS  Google Scholar 

  24. Sahni, V., Shafieloo, A., Starobinsky, A.A.: Phys. Rev. D 78, 103502 (2008)

    Article  ADS  Google Scholar 

  25. Freedman, W.L., Madore, B.F.: Annu. Rev. Astron. Astrophys. (2010). arXiv:1004.1856v1

  26. Simon, J., Verde, L., Jimenez, R.: Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  27. Stern, D., et al.: J. Cosmol. Astropart. Phys. 1002, 008 (2010)

    Article  ADS  Google Scholar 

  28. Riess, A.G., et al.: Astrophys. J. 730, 119 (2011)

    Article  ADS  Google Scholar 

  29. Larson, D., et al.: Astrophys. J. Suppl. Ser. 192, 16 (2011). arXiv:1001.4635v2 [astro-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grants Commission, New Delhi for its support for the present work through the Major Research Project vide F. No. 37-431/2009 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murli Manohar Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, M.M., Pathak, S.D. A Tachyonic Scalar Field with Mutually Interacting Components. Int J Theor Phys 51, 2370–2379 (2012). https://doi.org/10.1007/s10773-012-1116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1116-8

Keywords

Navigation