Skip to main content
Log in

Power-Law Expansion and Scalar Field Cosmology in Higher Derivative Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the evolution of a flat Friedmann-Robertson-Walker model filled with a perfect fluid and a scalar field minimally coupled to gravity in higher derivative theory of gravitation. Exact solution of the field equations are obtained by the assumption of power-law form of the scale factor. A number of evolutionary phases of the universe including the present accelerating phase are found to exist with scalar field in the higher derivative theory of gravitation. The properties of scalar field and other physical parameters are discussed in detail. We find that the equation of state parameter for matter and scalar field are same at late time in each case. We observe that a higher derivative term can hardly be a candidate to describe the presently observed accelerated expansion. It is only the hypothetical fluids, which provide the late time acceleration. It is also remarkable that the higher derivative theory does not effect the radiating model of scalar field cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. Riess, A.G., et al.: Astrophys. J. 560, 49 (2001)

    Article  ADS  Google Scholar 

  3. Garanavich, P.M., et al.: Astrophys. J. 509, 74 (1998)

    Article  ADS  Google Scholar 

  4. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bergmann, P.G.: Int. J. Theor. Phys. 1, 25 (1968)

    Article  Google Scholar 

  6. Nerved, K.: Astrophys. J. 161, 1059 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  7. Wagoner, R.V.: Phys. Rev. D 1, 3209 (1970)

    Article  ADS  Google Scholar 

  8. Utiyama, R., De Witt, B.S.: J. Math. Phys. 3, 608 (1962)

    Article  ADS  MATH  Google Scholar 

  9. Stella, K.: Gen. Relativ. Gravit. 9, 353 (1978)

    Article  ADS  Google Scholar 

  10. Whitt, B.: Phys. Lett. B 145, 176 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  11. Utiyama, R.: Prog. Theor. Phys. 72, 83 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Suen, W.M., Anderson, R.P.: Phys. Rev. D 35, 2940 (1987)

    Article  ADS  Google Scholar 

  13. Starobinsky, A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  14. Guth, A.H.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  15. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 77, 026007 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Billyard, A.P., Coley, A.A., Vanden Hoogen, R.J., Ibáñez, J., Olasagasti, I.: Class. Quantum Gravity 16, 4035 (1999)

    Article  ADS  MATH  Google Scholar 

  18. Copeland, E.J., Liddle, A.R., Wands, D.: Phys. Rev. D 57, 4686 (1998)

    Article  ADS  Google Scholar 

  19. Chimento, L.P., Jakubi, A.S.: Int. J. Mod. Phys. D 5, 71 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  20. Barrow, J.D.: Class. Quantum Gravity 10, 279 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  21. Chimento, L.P., Cossarini, A.E.: Class. Quantum Gravity 11, 1177 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kenmoku, M., Otsuki, K., Shigemoto, K., Uehara, K.: Class. Quantum Gravity 13, 1751 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Paul, B.C., Mukherjee, S., Beesham, A.: Mod Phys. D 7, 499 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Singh, G.P., Beesham, A., Deshpande, R.V.: Pramana J. Phys. 54, 729 (2000)

    Article  Google Scholar 

  25. Debnath, P.S., Paul, B.C.: Int. J. Mod. Phys. D 15, 189 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Paul, B.C., Mukherjee, S.: Int. J. Mod. Phys. D 7, 499 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Debnath, P.S., Paul, B.C.: Phys. Rev. D 76, 123505 (2007)

    Article  ADS  Google Scholar 

  28. Paul, B.C., Debnath, P.S.: arXiv:1105.3307 [gr-qc]

  29. Ellis, G.F.R., Madsen, M.S.: Class. Quantum Gravity 8, 667 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Barrow, J.D., Saich, P.: Class. Quantum Gravity 10, 279 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  31. Barrow, J.D., Mimoso, J.P.: Phys. Rev. D 50, 3746 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  32. Mimoso, J.P., Wands, D.: Phys. Rev. D 51, 477 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  33. Banerjee, N., Sen, S.: Phys. Rev. D 57, 4614 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  34. Paul, B.C.: Pramana J. Phys. 53, 833 (1999)

    Article  Google Scholar 

  35. Singh Ibotombi, N., Singh, S.S., Devi, S.R.: Astrophys. Space Sci. 334, 187 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, C.P., Singh, V. Power-Law Expansion and Scalar Field Cosmology in Higher Derivative Theory. Int J Theor Phys 51, 1889–1900 (2012). https://doi.org/10.1007/s10773-011-1065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1065-7

Keywords

Navigation