Skip to main content
Log in

On the Continuous Mechanics First and Second-Order Formulations for Nonequilibrium Nucleation: Derivation and Applications

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Nucleation and growth are phenomena that can be applied to several fields of science and technology. On the other hand, nucleation depends on the cooling rate, dislocating the equilibrium, as surface energy depends on the created and deformed surface area. The crystalline/glassy transition limit dependence on the thermal gradient is also analyzed. In this paper, under continuum mechanics, first and second-order nonequilibrium nucleation formulation models are derived, and a phase-change moving interface is considered in the thermal field. Important nucleation variables are plotted against the cooling rate for several nucleation angles. It is coupled with a theoretical model for the molar-specific heat capacity of solids to analyse its dependence on nucleation kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Karthika, T.K. Radhakrishnan, P. Kalaichelvi, Cryst. Growth Des. (2016). https://doi.org/10.1021/acs.cgd.6b00794

    Article  Google Scholar 

  2. W. Kurz, D.J. Fisher, Fundamentals, 4th edn. (Transtech Publications, Schwyz, 1998)

    Google Scholar 

  3. B. Shekunov, Cryst. Growth Des. (2020). https://doi.org/10.1021/acs.cgd.9b00651

    Article  Google Scholar 

  4. Y. Qin, P. Wen, M. Voshage, Y. Chen, P.G. Schückler, L. Jauer, D. Xia, H. Guo, Y. Zheng, J.H. Schleifenbaum, Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2019.107937

    Article  Google Scholar 

  5. C. Wei, Z. Zhang, D. Cheng, Z. Sun, M. Zhu, L. Li, Int. J. Extrem. Manuf. (2021). https://doi.org/10.1088/2631-7990/abce04

    Article  Google Scholar 

  6. J. Zhou, Y. Zhou, W. Tang, Curr. Comput. Aided Drug Des. (2022). https://doi.org/10.3390/cryst12070980

    Article  Google Scholar 

  7. B.E. Wyslouzil, J. Wölk, J. Chem. Phys. (2016). https://doi.org/10.1063/1.4962283

    Article  Google Scholar 

  8. D.W. Oxtoby, R. Evans, J. Chem. Phys (1988). https://doi.org/10.1063/1.455285

    Article  Google Scholar 

  9. X.C. Zeng, D.W. Oxtoby, J. Chem. Phys. (1991). https://doi.org/10.1063/1.460603

    Article  Google Scholar 

  10. L. Gránásy, J. Non-Cryst. Solids (1993). https://doi.org/10.1016/0022-3093(93)91250-7

    Article  Google Scholar 

  11. L. Gránásy, P.F. James, Proc. R. Soc. Lond. A (1998). https://doi.org/10.1098/rspa.1998.0230

    Article  Google Scholar 

  12. O. Gliko, N. Neumaier, P. Weichun, I. Haase, M. Fisher, A. Bacher, S. Weinkaufm, P.G. Vekilov, J. Am. Chem. Soc. (2005). https://doi.org/10.1021/ja043218k

  13. D.V. Alexandrov, Phys. Lett. A (2014). https://doi.org/10.1016/j.physleta.2014.03.051

    Article  Google Scholar 

  14. A. Sauter, F. Roosen-Runge, F. Zhangm, G. Lotze, R.M.J. Jacobs, F. Schreiber, J. Am. Chem. Soc. (2015). https://doi.org/10.1021/ja510533x.

  15. D.V. Alexandrov, E.V. Makoveeva, Phys. Lett. A (2020). https://doi.org/10.1016/j.physleta.2020.126259

    Article  Google Scholar 

  16. Y. Zhao, D. Song, H. Wang, X. Li, L. Chen, Z. Sun, Z. Wang, T. Zhai, Y. Fu, Y. Wang, S. Liu, Y. Du, W. Zhang, Intermetallics (2022). https://doi.org/10.1016/j.intermet.2022.107584

    Article  Google Scholar 

  17. S. Yang, Z. Guo, B. Bian, J. Du, Y. Hu, J. Phys. Chem. Lett. (2022). https://doi.org/10.1021/acs.jpclett.2c00855

    Article  Google Scholar 

  18. I.L. Ferreira, Int. J. Thermophys. (2022). https://doi.org/10.1007/s10765-021-02956-0

    Article  Google Scholar 

  19. I.L. Ferreira, A. Garcia, A.L.S. Moreira, Int. J. Thermophys. (2022). https://doi.org/10.1007/s10765-022-03099-6

    Article  Google Scholar 

  20. I.L. Ferreira, A.L.S. Moreira, Designing Shape of Nucleus and Grain Coalescence During Alloy Solidification in 3D-ICOMAS Conference, Verona (2022).

  21. I.L. Ferreira, A.L.S. Moreira, J. Aviz, T.A. Costa, O.F.L. Rocha, A.S. Barros, A. Garcia, J. Manuf. Proc. (2018). https://doi.org/10.1016/j.jmapro.2018.08.010

    Article  Google Scholar 

  22. I. L. Ferreira, J. A. de Castro, A. Garcia, Wettability and Interfacial Phenomena—Implications for Material Processing, 1edn (IntechOpen, London) (2019). https://doi.org/10.5772/intechopen.82307

  23. I.L. Ferreira, A. Garcia, Continuum Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-019-00836-5

    Article  Google Scholar 

  24. G. Kaptay. Z. Met. (2005). https://doi.org/10.3139/146.018080.

  25. I. Egry, Scripta Metall. Mater. (1993). https://doi.org/10.1016/0956-716X(93)90467-7

    Article  Google Scholar 

  26. S. Seetharaman, S.C. Du, Metall. Mater. Trans. B (1994). https://doi.org/10.1007/BF02650079

    Article  Google Scholar 

  27. W. Kurz, M. Rappaz, R. Trivedi, Int. J. Mater. Rev. (2021). https://doi.org/10.1080/09506608.2020.1757894

    Article  Google Scholar 

  28. M. Rappaz, W.J. Boettinger. Acta. Mater. (1999). https://doi.org/10.1016/S1359-6454(99)001880-3

    Article  Google Scholar 

  29. V. Kapil, C. Schran, A. Zen, J. Chen, C.J. Pickard, A. Michaelides, Nature (2022). https://doi.org/10.1038/s41586-022-05036-x

    Article  Google Scholar 

  30. K. Libbrecht, Am. Sci. (2007). https://doi.org/10.1511/2007.63.52

    Article  Google Scholar 

  31. N.T.H. Oanh, D.N. Binh, D.D. Duc, Q.H.T. Ngoc, N.H. Viet, Materials (2021). https://doi.org/10.3390/ma14143978

    Article  Google Scholar 

  32. J. Pijuan, S.A. Cegarra, S. Dista, V. Albaladejo-Fuentes, M.D. Riera, Materials (2022). https://doi.org/10.3390/ma15228159

    Article  Google Scholar 

  33. K. Kus, T. Breczko, Mater. Phys. Mech. (2010). https://doi.org/10.1088/2053-1591/ab3e95

    Article  Google Scholar 

  34. M. Aniolek, T. Smith, F. Czerwinski, Metals (2021). https://doi.org/10.3390/met11020372

    Article  Google Scholar 

  35. I.L. Ferreira, J.A. de Castro, A. Garcia, Thermochim. Acta (2019). https://doi.org/10.1016/j.tca.2019.178418

    Article  Google Scholar 

  36. I.L. Ferreira, J.A. Castro, A. Garcia, Recent Advances on Numerical Simulation (IntechOpen, London, 2021). https://doi.org/10.5772/intechopen.96880.

  37. I.L. Ferreira, Mater. Res. (2021). https://doi.org/10.1590/1980-5373-MR-2020-0529

    Article  Google Scholar 

  38. I.L. Ferreira, Int. J. Thermophys. (2021). https://doi.org/10.1007/s10765-021-02903-z

    Article  Google Scholar 

  39. O. Portmann, A. Vaterlaus, C. Stamm, D. Pescia, Magnetic domains, in Encyclopedia of Condensed Matter Physics (Elsevier, Amsterdam, 2005), pp. 191–197. https://doi.org/10.1016/B0-12-369401-9/00525-8.

  40. H.B. Ke, P. Wen, W.H. Wang, AIP Adv. (2012). https://doi.org/10.1063/1.4773224

    Article  Google Scholar 

  41. S.H. Simon, The Oxford Solid State Basics, 1st edn. (Oxford University Press, Oxford, 2013)

    MATH  Google Scholar 

  42. R. Shuttleworth, Proc. Phys. Soc. A (1950). https://doi.org/10.1088/0370-1298/63/5/302

    Article  Google Scholar 

  43. P. Müller, A. Saul, Surf. Sci. Rep. (2004). https://doi.org/10.1016/j.surfrep.2004.05.001

    Article  Google Scholar 

  44. P. Müller, A. Saul, F. Leroy, Nanosci. Nanotechnol. (2014). https://doi.org/10.1088/2043-6262/5/1/013002

    Article  Google Scholar 

  45. W. Di, L. Dezhi, W. Zhenyong, Compos. Sci. Inf. Technol. (2015). https://doi.org/10.5121/csit.2015.51104

    Article  Google Scholar 

  46. J.M.V. Quaresma, C.A. Santos, A. Garcia, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2000). https://doi.org/10.1007/s11661-000-0096-0.

Download references

Funding

The authors acknowledge the financial support provided by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil) Finance Code 001 and Grant 88881.707312/2022-01, and CNPq (National Council for Scientific and Technological Development—Brazil).

Author information

Authors and Affiliations

Authors

Contributions

I.L. Ferreira developed the formalism, derived the equations proposed, performed all the computations, and wrote the text. A.L.S. Moreira improved the quality of the text.

Corresponding author

Correspondence to I. L. Ferreira.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, I.L., Moreira, A.L.S. On the Continuous Mechanics First and Second-Order Formulations for Nonequilibrium Nucleation: Derivation and Applications. Int J Thermophys 44, 72 (2023). https://doi.org/10.1007/s10765-023-03178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03178-2

Keywords

Navigation