Skip to main content
Log in

A Short Overview on Graphene-Based Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this short review, the nanofluids based on graphene and graphene derivatives are discussed in terms of thermophysical properties. Regular heat transfer fluids as water, ethylene glycol, mixtures of those two as well as oils, ionic liquids, or other glycols are widely used in most of the cooling and heating applications. Nevertheless, nanoparticle-enhanced fluids are coming to the forefront of industrial applications, but the research is still ongoing in order to propose a better and viable alternative, with higher convection coefficients. On the other hand, carbon-based materials have a very high thermal conductivity and are the best candidates for a higher conductive new fluid. This particular overview implies the use of graphene and its derivatives (graphene nanoplatelets, graphene oxide, reduced graphene oxide etc.) as a base for nanofluids development. As a conclusion, thermal conductivity is increased up to 30 % for low nanoparticle loading, while the main drawback is the large increase in viscosity. Specific heat and density are not methodically studied and this is a disadvantage. Another observation derived from state of the art review is that coordinated studies are not noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

CNT:

Carbon nanotubes

DIW:

Deionized water

EG:

Ethylene glycol

FLG:

Few-layer graphene

G:

Graphene

GNP:

Graphene nanoplatelets

GNS:

Graphene nanosheets

GO:

Graphene oxide

GQD:

Graphene quantum dots

MLG:

Multi-layer graphene

MWCNT:

Multiwall carbon nanotubes

NF:

Nanofluids

NP:

Nanoparticles

PEG:

Polyethylene glycol

rGO:

Reduced graphene oxide

SLG:

Single-layer graphene

SWCNT:

Singlewall carbon nanotubes

W:

Water

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. X. Zhao, E. Jiaqiang, G. Wu, Y. Deng, D. Han, B. Zhang, Z. Zhang, Energy Convers Manage 184, 581 (2019)

    Article  Google Scholar 

  3. N.N. Rosli, M.A. Ibrahim, N.A. Ludin, M.A.M. Teridi, K. Sopian, Renew Sustain Energy Rev. 99, 83 (2019)

    Article  Google Scholar 

  4. M.R. Al-Hassan, A. Sen, T. Zaman, M.S. Mostari, Mater. Today Chem. 11, 225 (2019)

    Article  Google Scholar 

  5. Z. Yang, J. Tian, Z. Yin, Carbon 141, 467–480 (2019)

    Article  Google Scholar 

  6. J. Liu, H.J. Choi, L.Y. Meng, J. Ind. Eng. Chem. 64, 1 (2018)

    Article  Google Scholar 

  7. T.S. Tran, N.K. Dutta, N.R. Choudhury, Adv. Colloid Interface Sci. 261, 41 (2018)

    Article  Google Scholar 

  8. N. Ali, A.M. Bahman, N.F. Aljuwayhel, S.A. Ebrahim, S. Mukherjee, A. Alsayegh, Nanomaterials 11, 1628 (2021)

    Article  Google Scholar 

  9. M. Pavía, K. Alajami, Patrice Estellé, Alexandre Desforges, Brigitte Vigolo Adv. Coll. Interf. Sci. 294, 102452 (2021)

    Article  Google Scholar 

  10. S. Hamze, D. Cabaleiro, P. Estellé, J. Mol. Liq. 325, 115207 (2021)

    Article  Google Scholar 

  11. S. Sumanth et al., Heat Transfer. Asian Re. 47, 669 (2018)

    Article  Google Scholar 

  12. A. Ghozatloo, A. Rashidi, M. Shariaty-Niassar, Exp Therm Fluid Sci 53, 136 (2014)

    Article  Google Scholar 

  13. A. Ghozatloo, M. Shariaty-Niassar, A. Rashidi, Int. Commun. Heat. Mass. Transf. 42, 89 (2013)

    Article  Google Scholar 

  14. S. Hamze, N. Berrada, D. Cabaleiro, A. Desforges, J. Ghanbaja, J. Gleize, Nanomaterials 10, 1258 (2020)

    Article  Google Scholar 

  15. J. Liu, C. Xu, L.L. Chen, X. Fang, Z. Zhang, Sol. Energy Mater. Sol. Cells 170, 219 (2017)

    Article  Google Scholar 

  16. M. Kole, T. Dey, J. Appl. Phys. 113, 084307 (2013)

    Article  ADS  Google Scholar 

  17. H. Yarmand, S. Gharehkhani, G. Ahmadi, S.F.S. Shirazi, S. Baradaran, E. Montazer, M.N.M. Zubir, M.S. Alehashem, S.N. Kazi, M. Dahari, Energy Convers Manag. 100, 419 (2015)

    Article  Google Scholar 

  18. N. Ahammed, L.G. Asirvatham, J. Titus, J.R. Bose, S. Wongwises, Int Commun. Heat. Mass. Transf. 70, 66 (2016)

    Article  Google Scholar 

  19. W.S. Sarsam, A. Amiri, S.N. Kazi, A. Badarudin, Energy Convers Manag. 116, 101 (2016)

    Article  Google Scholar 

  20. A. Amiri, H.K. Arzani, S.N. Kazi, B.T. Chew, A. Badarudin, Int. J. Heat Mass. Transf. 97, 538 (2016)

    Article  Google Scholar 

  21. S. Das, A. Giri, S. Samanta, S. Kanagaraj, J. Sci. 4, 163 (2019)

    Google Scholar 

  22. M. Sarafraz, M.R. Safaei, Z. Tian, M. Goodarzi, E.P.B. Filho, M. Arjomandi, Energies 12, 1929 (2019)

    Article  Google Scholar 

  23. A. Akbari, S.A.A. Fazel, S. Maghsoodi, A.S. Kootenaei, S.A.A. Fazel, S. Maghsoodi, J Dispers Sci Technol 40, 17 (2019)

    Article  Google Scholar 

  24. M.A. Marcos, D. Cabaleiro, M.J.G. Guimarey, M.J.P. Comuñas, L. Fedele, J. Fernández, L. Lugo, Nanomaterials 8, 16 (2018)

    Article  Google Scholar 

  25. J.P. Vallejo, E. Álvarez-Regueiro, D. Cabaleiro, J. Fernández-Seara, J. Fernández, L. Lugo, Appl. Therm. Eng. 152, 113 (2019)

    Article  Google Scholar 

  26. D.K. Agarwal, A. Vaidyanathan, S.S. Kumar, Exp Therm Fluid Sci 71, 126 (2016)

    Article  Google Scholar 

  27. D. Cabaleiro, L. Colla, S. Barison, L. Lugo, L. Fedele, S. Bobbo, Nanoscale Res. Lett. 12, 53 (2017)

    Article  ADS  Google Scholar 

  28. M.T. Zhongpan, G.Z. Cai, Processes 35, 67 (2020)

    Google Scholar 

  29. D.L. Nika, A.S. Askerov, A.A. Balandin, Nano Lett 12, 3238 (2012)

    Article  ADS  Google Scholar 

  30. Y. Gao, H. Wang, A.P. Sasmito, A.S. Mujumdar, Int. J. Heat. Mass. Transf. 123, 97 (2018)

    Article  Google Scholar 

  31. S. Iranmanesh, M. Mehrali, E. Sadeghinezhad, B.C. Ang, H.C. Ong, A. Esmaeilzadeh, Int. Commun. Heat. Mass. Transf. 79, 74 (2016)

    Article  Google Scholar 

  32. S. Iranmanesh, H.C. Ong, B.C. Ang, E. Sadeghinezhad, A. Esmaeilzadeh, M. Mehrali, J. Clean. Prod. 162, 121 (2017)

    Article  Google Scholar 

  33. G.-J.J. Lee, C.K. Rhee, J. Mater. Sci. 49, 1506 (2014)

    Article  ADS  Google Scholar 

  34. M.M. Mehrali, E. Sadeghinezhad, M.A. Rosen, S.T. Latibari, M.M. Mehrali, H.S.C. Metselaar, Exp. Therm. Fluid. Sci. 68, 100 (2015)

    Article  Google Scholar 

  35. M.M. Mehrali, E. Sadeghinezhad, M.A. Rosen, A.R. Akhiani, S.T. Latibari, M.M. Mehrali, Int. Commun. Heat. Mass. Transf. 66, 23 (2015)

    Article  Google Scholar 

  36. A. Naghash, S. Sattari, A. Rashidi, Int. Commun. Heat. Mass. Transf. 78, 127 (2016)

    Article  Google Scholar 

  37. E. Sadeghinezhad, M.M. Mehrali, M.A. Rosen, A.R. Akhiani, S.T. Latibari, M.M. Mehrali, Appl. Therm. Eng. 100, 775 (2016)

    Article  Google Scholar 

  38. E. Sadeghinezhad, A.R. Akhiani, H.S.C. Metselaar, S.T. Latibari, M. Mehrali, Appl. Therm. Eng. 175, 115385 (2020)

    Article  Google Scholar 

  39. E. Sadeghinezhad, H. Togun, M. Mehrali, P.S. Nejad, S.T. Latibari, T. Abdulrazzaq, Int. J. Heat. Mass. Transf. 81, 41 (2015)

    Article  Google Scholar 

  40. R. Sadri, M. Hosseini, S.N. Kazi, S. Bagheri, N. Zubir, G. Ahmadi, Chem. Phys. Lett. 675, 92 (2017)

    Article  ADS  Google Scholar 

  41. R. Sadri, M. Hosseini, S.N. Kazi, S. Bagheri, S.M. Ahmed, G. Ahmadi, Energy Convers. Manag. 150, 26 (2017)

    Article  Google Scholar 

  42. R. Sadri, M. Hosseini, S.N. Kazi, S. Bagheri, A.H. Abdelrazek, G. Ahmadi, J. Colloid Interface Sci. 509, 140 (2018)

    Article  ADS  Google Scholar 

  43. W.S. Sarsam, A. Amiri, M.N.M. Zubir, H. Yarmand, S.N. Kazi, A. Badarudin, Colloids Surf. A 500, 17 (2016)

    Article  Google Scholar 

  44. C. Selvam, D.M. Lal, S. Harish, Appl. Therm. Eng. 123, 50 (2017)

    Article  Google Scholar 

  45. C. Selvam, D.M. Lal, S. Harish, J. Therm. Anal. Calorim. 129, 947 (2017)

    Article  Google Scholar 

  46. C. Selvam, D.M. Lal, S. Harish, Thermochim. Acta 642, 32 (2016)

    Article  Google Scholar 

  47. S.S. Shazali, S. Rozali, A. Amiri, M.N.M. Zubir, M.F.M. Sabri, M.Z. Zabri, Mater. Chem. Phys. 212, 363 (2018)

    Article  Google Scholar 

  48. G. Huminic, A. Huminic, Int. J. Thermophys. 42, 12 (2021)

    Article  ADS  Google Scholar 

  49. A. Sözen, Ç. Filiz, İ Aytaç, K. Martin, H.M. Ali, K. Boran, Y. Yetişken, Int. J. Thermophys. 42, 35 (2021)

    Article  ADS  Google Scholar 

  50. F. Dong, J. Wan, Y. Feng, Z. Wang, J. Ni, Int. J. Thermophys. 42, 46 (2021)

    Article  ADS  Google Scholar 

  51. T.T. Baby, S. Ramaprabhu, J. Appl. Phys. 108, 25 (2010)

    Article  Google Scholar 

  52. T.T. Baby, S. Ramaprabhu, Nanoscale Res. Lett. 6, 289 (2011)

    Article  ADS  Google Scholar 

  53. L. Chen, C. Xu, J. Liu, X. Fang, Z. Zhang, Sol Energy 148, 17 (2017)

    Article  ADS  Google Scholar 

  54. M.R. Esfahani, E.M. Languri, Exp Therm. Fluid Sci. 83, 100 (2017)

    Article  Google Scholar 

  55. M. Hadadian, E.K. Goharshadi, A. Youssefi, J. Nanopart. Res. 16, 2788 (2014)

    Article  ADS  Google Scholar 

  56. Z. Hajjar, A. Rashidi, A. Ghozatloo, Enhanced thermal conductivities of graphene oxide nanofluids. Int. Commun. Heat. Mass. Transf. 57, 128 (2014)

    Article  Google Scholar 

  57. A. Ijam, R. Saidur, P. Ganesan, A.M. Golsheikh, Int. J. Heat. Mass. Transf. 87, 92 (2015)

    Article  Google Scholar 

  58. S. Khosrojerdi, A.M. Lavasani, M. Vakili, Sol. Energy Mater. Sol. Cells 164, 32 (2017)

    Article  Google Scholar 

  59. N.S. Naveen, P.S. Kishore, J. Dispers. Sci. Technol. 2, 1 (2020)

    Google Scholar 

  60. M. Tahani, M. Vakili, S. Khosrojerdi, Int. Commun. Heat Mass. Transf. 76, 358 (2016)

    Article  Google Scholar 

  61. D.A. Vincely, E. Natarajan, Energy Convers Manag 117, 1 (2016)

    Article  Google Scholar 

  62. L. Yang, W. Ji, Z. Zhang, X. Jin, Int. Commun. Heat. Mass. Transf. 109, 104353 (2019)

    Article  Google Scholar 

  63. W. Yu, H. Xie, W. Chen, J. Appl. Phys. 107, 94317 (2010)

    Article  Google Scholar 

  64. W. Yu, H. Xie, D. Bao, Nanotechnology 21, 55705 (2010)

    Article  ADS  Google Scholar 

  65. F. Sedaghat, F. Yousefi, J. Mol. Liq. 278, 299 (2019)

    Article  Google Scholar 

  66. E.K. Goharshadi, Z. Niyazi, M. Shafaee, M.B. Moghaddam, R. Ludwig, M. Namayandeh-Jorabchi, J. Mol. Liq. 241, 831 (2017)

    Article  Google Scholar 

  67. P.M. Sudeep, J. Taha-Tijerina, P.M. Ajayan, T.N. Narayanan, M.R. Anantharaman, RSC Adv. 4, 24887 (2014)

    Article  ADS  Google Scholar 

  68. M.M. Mehrali, E. Sadeghinezhad, S.T. Latibari, S.N. Kazi, M.M. Mehrali, M.N.B.M. Zubir, Nanoscale Res. Lett. 9, 15 (2014)

    Article  Google Scholar 

  69. M.M. Mehrali, E. Sadeghinezhad, M.A. Rosen, A.R. Akhiani, S.T. Latibari, M.M. Mehrali, Adv. Powder Technol. 27, 717 (2016)

    Article  Google Scholar 

  70. M.M. Mehrali, E. Sadeghinezhad, S.T. Latibari, M.M. Mehrali, H. Togun, M.N.M.M. Zubir, J. Mater. Sci. 49, 7156 (2014)

    Article  ADS  Google Scholar 

  71. L. Chen, J. Liu, X. Fang, Z. Zhang, Sol. Energy Mater. Sol. Cells 163, 125 (2017)

    Article  Google Scholar 

  72. S.S. Gupta, V.M. Siva, S. Krishnan, T.S. Sreeprasad, P.K. Singh, T. Pradeep, J. Appl. Phys. 110, 84302 (2011)

    Article  Google Scholar 

  73. J. Liu, F. Wang, L. Zhang, X. Fang, Z. Zhang, Renew Energy 63, 519 (2014)

    Article  Google Scholar 

  74. W. Ma, F. Yang, J. Shi, F. Wang, Z. Zhang, S. Wang, Coll. Surf. A 431, 120 (2013)

    Article  Google Scholar 

  75. M.M. Mehrali, E. Sadeghinezhad, A.R. Akhiani, S.T. Latibari, S. Talebian, A. Dolatshahi-Pirouz, J. Clean Prod. 137, 555 (2016)

    Article  Google Scholar 

  76. F. Wang, L. Han, Z. Zhang, X. Fang, J. Shi, W. Ma, Nanoscale Res. Lett. 7, 314 (2012)

    Article  ADS  Google Scholar 

  77. W. Yu, H. Xie, X.X. Wang, Phys. Lett. A 375, 1323 (2011)

    Article  ADS  Google Scholar 

  78. H. Zhang, S. Wang, Y. Lin, M. Feng, Q. Wu, Appl. Therm. Eng. 119, 132 (2017)

    Article  ADS  Google Scholar 

  79. R. Ranjbarzadeh, A. Karimipour, M. Afrand, A.H.M. Isfahani, A. Shirneshan, Appl. Therm. Eng. 126, 538 (2017)

    Article  Google Scholar 

  80. M.A. Nazari, R. Ghasempour, M.H. Ahmadi, G. Heydarian, M.B. Shafii, Int. Commun. Heat Mass Transf. 91, 90 (2018)

    Article  Google Scholar 

  81. B. Wang, J. Hao, H. Li, Dalton Trans. 42, 5866 (2013)

    Article  Google Scholar 

  82. K.K. Mishra, K. Panda, N. Kumar, D. Malpani, T.R. Ravindran, O.P. Khatri, J. Ind. Eng. Chem. 61, 97 (2018)

    Article  Google Scholar 

  83. D. Cabaleiro, P. Estellé, H. Navas, A. Desforges, B. Vigolo, J. Nanofluids. 7, 1081 (2018)

    Article  Google Scholar 

  84. M.R. Esfahani, E.M. Languri, M.R. Nunna, Int. Commun. Heat Mass Transf. 76, 308 (2016)

    Article  Google Scholar 

  85. H. Akhavan-Zanjani, M. Saffar-Avval, M. Mansourkiaei, F. Sharif, M. Ahadi, Int. J. Theor. Sci. 100, 316 (2016)

    Article  Google Scholar 

  86. P. Chen, S. Harmand, S. Szunerits, R. Boukherroub, Int. J. Theor. Sci. 135, 445 (2019)

    Article  Google Scholar 

  87. M. Mehrali, M.K. Ghatkesar, R. Pecnik, Appl. En. 224, 103 (2018)

    Article  Google Scholar 

  88. N. Sandeep, A. Malvandi, Adv. Powd. Tech. 27, 2448 (2016)

    Article  Google Scholar 

  89. N. Wang, G. Xu, S. Li, X. Zhang, En. Proc. 105, 194 (2017)

    Article  Google Scholar 

  90. R. Pamies, M.D. Avilés, J. Arias-Pardilla, T. Espinosa, F.J. Carrión, J. Sanes, M.D. Bermúdez, Tribol. Int. 122, 200 (2018)

    Article  Google Scholar 

  91. C. Selvam, T. Balaji, D.M. Lal, S. Harish, Exp. Theor. Fluor. Sci. 80, 67 (2017)

    Article  Google Scholar 

  92. C. Selvam, R.S. Raja, D.M. Lal, S. Harish, Int. J. Heat. Mass. Transf. 115, 580 (2017)

    Article  Google Scholar 

  93. T. Fidan-Aslan, E. Alyamac-Seydibeyoglu, Int. J. Thermophys. 43, 75 (2022)

    Article  ADS  Google Scholar 

  94. Y.H. Chai, S. Yusup, V.S. Chok, S. Irawan, J.S.D.B. Singh, Appl. Th. Eng. 122, 794 (2017)

    Article  Google Scholar 

  95. M.B. Moghaddam, E.K. Goharshadi, M.H. Entezari, P. Nancarrow, Chem. Eng. J. 231, 365 (2013)

    Article  Google Scholar 

  96. M.B. Moghaddam, E.K. Goharshadi, F. Moosavi, J. Mol. Liq. 222, 82 (2016)

    Article  Google Scholar 

  97. P. Dhar, M.H.D. Ansari, S.S. Gupta, V.M. Siva, T. Pradeep, A. Pattamatta, S.K. Das, J. Nanopart Res. 15, 2095 (2013)

    Article  ADS  Google Scholar 

  98. K. Elsaid, M.A. Abdelkareem, H.M. Maghrabie, E.T. Sayed, T. Wilberforce, Int. J. Thermofluids 10, 100073 (2021)

    Article  Google Scholar 

  99. U. Calviño, J.P. Vallejo, M.H. Buschmann, J. Fernández-Seara, L. Lugo, Nanomaterials 11, 844 (2021)

    Article  Google Scholar 

  100. G. Huminic, A. Huminic, Nanomaterials 11, 2612 (2021)

    Article  Google Scholar 

  101. Ç. Demirkır, H. Ertürk, Int. J. Heat Mass Transf. 149, 119113 (2020)

    Article  Google Scholar 

  102. A.O. Borode, N.A. Ahmed, P.A. Olubambi, M. Sharifpur, J.P. Meyer, Int. J. Thermophys. 42, 158 (2021)

    Article  ADS  Google Scholar 

  103. D. Vasudevan, D. Senthilkumar, S. Surendhiran, Int. J. Thermophys. 41, 74 (2020)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AAM and LZ wrote the main manuscript text and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Alina Adriana Minea.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Applicable for both human and/ or animal studies. Ethical committees, Internal Review Boards and guidelines followed must be named. When applicable, additional headings with statements on consent to participate and consent to publish are also required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minea, A.A., Zupcu, L. A Short Overview on Graphene-Based Nanofluids. Int J Thermophys 43, 161 (2022). https://doi.org/10.1007/s10765-022-03093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03093-y

Keywords

Navigation