Skip to main content
Log in

Photothermal Response of Polymeric Materials Including Complex Heat Capacity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The paper presents a generalized model of the photothermal response of a polymer sample. The model is based on a linear non-Fourier heat conduction equation that considers thermal memory and complex heat capacity. The physical meaning of imaginary heat capacity is discussed from the point of view of non-equilibrium thermodynamics. The derived heat conduction equation introduces two additional dynamic properties of a medium to time-varying heat conduction: inertial and kinetic relaxation time. The influence of these relaxation times on photothermal response is analyzed. It is shown that the derived model could explain the measured photoacoustic response of different semi-crystalline polyethylenes (PEs). The obtained results show that photothermal techniques can be employed to estimate relaxation phenomena in polymeric materials when the frequency scale of the experiment is greater than the inverse value of any relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Rosencwaig, A. Gersho, Photoacoustic effect with solids: a theoretical treatment. Science 190, 556–557 (1975)

    Article  ADS  Google Scholar 

  2. H. Vargas, L.C.M. Miranda, Photoacoustic and related photothermal techniques. Phys. Rep. 161, 43–101 (1988)

    Article  ADS  Google Scholar 

  3. S. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996)

    Book  Google Scholar 

  4. F. Scudieri, in Photoacoustic and Photothermal Phenomena: 10th International Conference: Rome, Italy. (American Institute of Physics, Woodbury, N.Y., 1999)

  5. S. Galović, D. Kostoski, Photothermal wave propagation in media with thermal memory. J. Appl. Phys. 93, 3063–3070 (2003)

    Article  ADS  Google Scholar 

  6. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959)

    MATH  Google Scholar 

  7. V. Peshkov, Second sound in helium II. J. Phys. (USSR) 8, 381–389 (1944)

    Google Scholar 

  8. C.C. Ackerman, W.C. Overton, Second sound in solid helium-3. Phys. Rev. Lett. 22, 764–766 (1969)

    Article  ADS  Google Scholar 

  9. C.C. Ackerman, R.A. Guyer, Temperature pulses in dielectric solids. Ann. Phys. 50, 128–185 (1968)

    Article  ADS  Google Scholar 

  10. T.F. McNelly, S.J. Rogers, D.J. Channin, R.J. Rollefson, W.M. Goubau, G.E. Schmidt et al., Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24, 100–102 (1970)

    Article  ADS  Google Scholar 

  11. V. Narayanamurti, R.C. Dynes, Observation of second sound in bismuth. Phys. Rev. Lett. 28, 1461–1465 (1972)

    Article  ADS  Google Scholar 

  12. H.E. Jackson, C.T. Walker, Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Phys. Rev. B 3, 1428–1439 (1971)

    Article  ADS  Google Scholar 

  13. W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112, 555–560 (1990)

    Article  Google Scholar 

  14. K. Mitra, S. Kumar, A. Vedevarz, M.K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117, 568–573 (1995)

  15. H. Herwig, K. Beckert, Experimental evidence about the controversy concerning fourier or non-fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transf. 36, 387–392 (2000)

    Article  ADS  Google Scholar 

  16. W. Roetzel, N. Putra, S.K. Das, Experiment and analysis for non-fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 42, 541–552 (2003)

    Article  Google Scholar 

  17. E.P. Scott, M. Tilahun, B. Vick, The question of thermal waves in heterogeneous and biological materials. J. Biomech. Eng. 131, 074518 (2009)

    Article  Google Scholar 

  18. N.O. Birge, S.R. Nagel, Specific-heat spectroscopy of the glass transition. Phys. Rev. Lett. 54, 2674–2677 (1985)

    Article  ADS  Google Scholar 

  19. P.K. Dixon, Specific-heat spectroscopy and dielectric susceptibility measurements of salol at the glass transition. Phys. Rev. B 42, 8179–8186 (1990)

    Article  ADS  Google Scholar 

  20. N.O. Birge, S.R. Nagel, Wide-frequency specific heat spectrometer. Rev. Sci. Instrum. 58, 1464–1470 (1987)

    Article  ADS  Google Scholar 

  21. M. Varma-Nair, B. Wunderlich, Non isothermal heat capacities and chemical reactions using a modulated DSC. J. Therm. Anal. 46, 879–892 (1996)

    Article  Google Scholar 

  22. R. Scherrenberg, V. Mathot, P. Steeman, The applicability of TMDSC to polymeric systems general theoretical description based on the full heat capacity formulation. J. Therm. Anal. Calorim. 54, 477–499 (1998)

    Article  Google Scholar 

  23. A. Saiter, H. Couderc, J. Grenet, Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations. J. Therm. Anal. Calorim. 88, 483–488 (2007)

    Article  Google Scholar 

  24. A. Toda, T. Oda, M. Hikosaka, Y. Saruyama, A new analyzing method of temperature modulated DSC of exo- or endo-thermic process: application to polyethylene crystallization. Thermochim. Acta 293, 47–63 (1997)

    Article  Google Scholar 

  25. A. Toda, Y. Saruyama, A modeling of the irreversible melting kinetics of polymer crystals responding to temperature modulation with retardation of melting rate coefficient. Polymer 42, 4727–4730 (2001)

    Article  Google Scholar 

  26. Y. Saruyama, AC calorimetry at the first order phase transition point. J. Therm. Anal. 38, 1827–1833 (1992)

    Article  Google Scholar 

  27. L. Landau, Theory of the superfluidity of helium II. Phys. Rev. 60, 356–358 (1941)

    Article  ADS  MATH  Google Scholar 

  28. C. Cattaneo, Sulla Conduzione del Calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  29. M.P. Vernotte, La veritable equation de chaleur. C. R. Hebd. Seances Acad. Sci. 247, 2103–2105 (1958)

    MathSciNet  Google Scholar 

  30. R.A. Guyer, J.A. Krumhansl, Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  ADS  Google Scholar 

  31. D.D. Joseph, L. Preziosi, Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. D.D. Joseph, L. Preziosi, Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)]. Rev. Mod. Phys. 62, 375–391 (1990)

  33. I.A. Novikov, Harmonic thermal waves in materials with thermal memory. J. Appl. Phys. 81, 1067–1072 (1997)

    Article  ADS  Google Scholar 

  34. D. Jou, J. Casas-Vazquez, G. Lebon, Extended irreversible thermodynamics. Rep. Prog. Phys. 51, 1105–1179 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. Cimmelli, Different thermodynamic theories and different heat conduction laws. J. Non-equilib. Thermodyn. 34, 299–333 (2009)

    Article  ADS  MATH  Google Scholar 

  36. S. Galović, Z. Šoškić, M. Popović, D. Čevizović, Z. Stojanović, Theory of photoacoustic effect in media with thermal memory. J. Appl. Phys. 116, 024901 (2014)

    Article  ADS  Google Scholar 

  37. P.S. Galovic, N. Soskic, N. Popovic, Analysis of photothermal response of thin solid films by analogy with passive linear electric networks. Therm. Sci. 13, 129–142 (2009)

    Article  Google Scholar 

  38. M.N. Popovic, M.V. Nesic, M. Zivanov, D.D. Markushev, S.P. Galovic, Photoacoustic response of a transmission photoacoustic configuration for two-layer samples with thermal memory. Opt. Quant. Electron. 50, 330 (2018)

    Article  Google Scholar 

  39. J. Ordóñez-Miranda, J.J. Alvarado-Gil, Frequency-modulated hyperbolic heat transport and effective thermal properties in layered systems. Int. J. Therm. Sci. 49, 209–217 (2010)

    Article  Google Scholar 

  40. J. Ordonez-Miranda, J. Alvarado-Gil, Effective thermal properties of multilayered systems with interface thermal resistance in a hyperbolic heat transfer model. Int. J. Thermophys. 31, 900–925 (2010)

    Article  ADS  Google Scholar 

  41. R.O. Davies, The macroscopic theory of irreversibility. Rep. Prog. Phys. 19, 326–367 (1956)

    Article  ADS  MATH  Google Scholar 

  42. J.L. Garden, Macroscopic non-equilibrium thermodynamics in dynamic calorimetry. Thermochim. Acta 452, 85–105 (2007)

    Article  Google Scholar 

  43. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Wiley, New York, 1968)

    MATH  Google Scholar 

  44. L.H. Sperling, Introduction to Physical Polymer Science (Wiley, Hoboken, NJ, 2005)

    Book  Google Scholar 

  45. R.J. Young, P.A. Lovell, Introduction to Polymers (CRC Press, Boca Raton, FL, 2011)

    Book  Google Scholar 

  46. B. Wunderlich, Thermal Analysis of Polymeric Materials (Springer, Berlin, 2005)

    Google Scholar 

  47. G. Astarita, L. Nicolais, Physics and mathematics of heat and mass transfer in polymers. Pure Appl. Chem. 55, 727–736 (1983)

    Article  Google Scholar 

  48. M.N. Popovic, D.D. Markushev, M.V. Nesic, M.I. Jordovic-Pavlovic, S.P. Galovic, Optically induced temperature variations in a two-layer volume absorber including thermal memory effects. J. Appl. Phys. 129, 015104 (2021)

    Article  ADS  Google Scholar 

  49. J.A. Balderas-López, Photoacoustic signal normalization method and its application to the measurement of the thermal diffusivity for optically opaque materials. Rev. Sci. Instrum. 77, 064902 (2006)

    Article  ADS  Google Scholar 

  50. W.L.B. Melo, R.M. Faria, Photoacoustic procedure for measuring thermal parameters of transparent solids. Appl. Phys. Lett. 67, 3892–3894 (1995)

    Article  ADS  Google Scholar 

  51. J.L. Garden, J. Richard, Y. Saruyama, Entropy production in TMDSC. J. Therm. Anal. Calorim. 94, 585–590 (2008)

    Article  Google Scholar 

  52. D.Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  53. D.Y. Tzou, Macro-to-Microscale Heat Transfer: The Lagging Behavior (Taylor and Francis, Washington, DC, 1996)

    Google Scholar 

  54. K.-C. Liu, Y.-N. Wang, Y.-S. Chen, Investigation on the bio-heat transfer with the dual-phase-lag effect. Int. J. Therm. Sci. 58, 29–35 (2012)

    Article  Google Scholar 

  55. H. Askarizadeh, H. Ahmadikia, Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue. Heat Mass Transf. 50, 1673–1684 (2014)

    Article  ADS  Google Scholar 

  56. P. Forghani, H. Ahmadikia, A. Karimipour, Non-fourier boundary conditions effects on the skin tissue temperature response. Heat Transf. Asian Res. 46, 29–48 (2017)

    Article  Google Scholar 

  57. M. Nesic, M. Popovic, M. Rabasovic, D. Milicevic, E. Suljovrujic, D. Markushev et al., Thermal diffusivity of high-density polyethylene samples of different crystallinity evaluated by indirect transmission photoacoustics. Int. J. Thermophys. 39, 24 (2018)

    Article  ADS  Google Scholar 

  58. E. Suljovrujic, Complete relaxation map of polypropylene: radiation-induced modification as dielectric probe. Polym. Bull. 68, 2033–2047 (2012)

    Article  Google Scholar 

  59. D. Milicevic, M. Micic, E. Suljovrujic, Radiation-induced modification of dielectric relaxation spectra of polyolefins: polyethylenes vs. polypropylene. Polym. Bull. 71, 2317–2334 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, contract number 451-03-9/2021-14/200017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Galovic.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djordjevic, K.L., Milicevic, D., Galovic, S.P. et al. Photothermal Response of Polymeric Materials Including Complex Heat Capacity. Int J Thermophys 43, 68 (2022). https://doi.org/10.1007/s10765-022-02985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02985-3

Keywords

Navigation