Skip to main content
Log in

Model Entropy Equation for Gaseous Substances

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, analytical equation for predicting molar entropy of gaseous substances is presented. The average absolute deviation from experimental data (AAD) is employed as accuracy indicator. The model is used to fit experimental data of four diatomic molecules: ICl (X 1Σg+), BBr (X 1Σ+), NaH (X 1Σ+), and LiH (X 1Σ+). The AADs obtained for the diatomic molecules are 0.0901, 0.2010, 0.5261 and 0.6560%, respectively. The results show that the proposed equation is a near perfect model in predicting experimental data of the diatomic molecules investigated and is approximately equivalent to the improved q-deformed Scarf II potential in modeling molar entropy of the selected diatomic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. P. Li, Biomed. Eng. Online 18, 30 (2019). https://doi.org/10.1186/s12938-019-0650-5

    Article  Google Scholar 

  2. R.L. Hadimani, in Magnetic Nanostructured Materials, ed. By A.A. El-Gendy, J.M. Barandiaràn, R.L. Hadimani (Elsevier, Amsterdam, 2018), p. 269 https://doi.org/10.1016/B978-0-12-813904-2.00009-7

  3. M. Hasanpour, M. Hatami, Adv. Colloid Interface Sci. 284, 102247 (2020). https://doi.org/10.1016/j.cis.2020.102247

    Article  Google Scholar 

  4. C.S. Jia, L.H. Zhang, X.L. Peng, J.X. Luo, Y.L. Zhao, J.Y. Liu, J.J. Guo, L.D. Tang, Chem. Eng. Sci. 202, 70 (2019). https://doi.org/10.1016/j.ces.2019.03.033

    Article  Google Scholar 

  5. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 122 (2018). https://doi.org/10.1016/j.ces.2018.06.027

    Article  Google Scholar 

  6. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26 (2018). https://doi.org/10.1016/j.ces.2018.03.009

    Article  Google Scholar 

  7. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 715, 186 (2019). https://doi.org/10.1016/j.cplett.2018.11.044

    Article  ADS  Google Scholar 

  8. J. Wang, C.S. Jia, C.J. Li, X.L. Peng, L.H. Zhang, J.Y. Liu, ACS Omega 4, 19193 (2019). https://doi.org/10.1021/acsomega.9b02488

    Article  Google Scholar 

  9. C.S. Jia, J. Li, Y.S. Liu, X.L. Peng, X. Jia, L.H. Zhang, R. Jiang, X.P. Li, J.Y. Liu, Y.L. Zhao, J. Mol. Liq. 315, 113751 (2020). https://doi.org/10.1016/j.molliq.2020.113751

    Article  Google Scholar 

  10. C.W. Wang, J. Wang, Y.S. Liu, X.L. Peng, C.S. Jia, L.H. Zhang, L.Z. Yi, J.Y. Liu, C.S. Jia, X. Jia, J. Mol. Liq. 321, 114912 (2021). https://doi.org/10.1016/j.molliq.2020.114912

    Article  Google Scholar 

  11. C.S. Jia, Y.T. Wang, L.S. Wei, C.W. Wang, X.L. Peng, L.H. Zhang, ACS Omega 4, 20000 (2019). https://doi.org/10.1021/acsomega.9b02950

    Article  Google Scholar 

  12. J.F. Wang, X.L. Peng, L.H. Zhang, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 686, 131 (2017). https://doi.org/10.1016/j.cplett.2017.08.047

    Article  ADS  Google Scholar 

  13. C.S. Jia, L.H. Zhang, X.L. Peng, Int. J. Quantum Chem. 117, e25383 (2017). https://doi.org/10.1002/qua.25383

    Article  Google Scholar 

  14. H. Yanar, A. Taş, M. Salti, O. Aydogdu, Eur. Phys. J. Plus 135, 292 (2020). https://doi.org/10.1140/epjp/s13360-020-00297-9

    Article  Google Scholar 

  15. E.S. Eyube, P.P. Notani, M.M. Izam, Mol. Phys. (2021). https://doi.org/10.1080/00268976.2021.1979265

    Article  Google Scholar 

  16. E.S. Eyube, G.G. Nyam, P.P. Notani, Phys. Scr. 96, 125017 (2021). https://doi.org/10.1088/1402-4896/ac2eff

    Article  ADS  Google Scholar 

  17. National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (2017) https://doi.org/10.18434/T42S31

  18. F.J. Gordillo-Vázquez, J.A. Kunc, J. Appl. Phys. 84, 4693 (1998). https://doi.org/10.1063/1.368712

    Article  ADS  Google Scholar 

  19. R. Khordad, A. Ghanbari, Int. J. Thermophys. 42, 115 (2021). https://doi.org/10.1007/s10765-021-02865-2

    Article  ADS  Google Scholar 

  20. M.L. Strekalov, Chem. Phys. Lett. 439, 209 (2007). https://doi.org/10.1016/j.cplett.2007.03.052

    Article  ADS  Google Scholar 

  21. J.A. Coxon, M.A. Wicramaaratchi, J. Mol. Spectrosc. 79, 380 (1980). https://doi.org/10.1016/0022-2852(80)90220-9

    Article  ADS  Google Scholar 

  22. N.T. Hunt, W.Y. Fan, Z. Liu, P.B. Davies, J. Mol. Spectrosc. 191, 326 (1998). https://doi.org/10.1006/jmsp.1998.7632

    Article  ADS  Google Scholar 

  23. P.G. Hajigeorgiou, J. Mol. Spectrosc. 263, 101 (2010). https://doi.org/10.1016/j.jms.2010.07.003

    Article  ADS  Google Scholar 

  24. R. Horchani, S.A. Shafil, H. Friha, H. Jelassi, Int. J. Thermophys. 42, 84 (2021). https://doi.org/10.1007/s10765-021-02839-4

    Article  ADS  Google Scholar 

  25. M. Habibinejad, R. Khordad, A. Ghanbari, Physica B 613, 412940 (2021). https://doi.org/10.1016/j.physb.2021.412940

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Eyube E.S.: Conceptualization, methodology, validation, data curation, formal analysis, project administration, supervision, writing – original draft, writing – review and editing. B.M. Bitrus: formal analysis, validation, data curation, writing – review and editing. H. Samaila: methodology, validation, data curation, visualization, supervision, writing – review and editing. P.P. Notani: Methodology, formal analysis, validation, data curation, writing – review and editing.

Corresponding author

Correspondence to E. S. Eyube.

Ethics declarations

Conflict of interest

We have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyube, E.S., Bitrus, B.M., Samaila, H. et al. Model Entropy Equation for Gaseous Substances. Int J Thermophys 43, 55 (2022). https://doi.org/10.1007/s10765-022-02980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02980-8

Keywords

Navigation