Skip to main content
Log in

Thermo-physical and Mechanical Properties of Clay Bricks Produced for Energy Saving

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study examined the production of porous and light clay bricks, which have low thermal conductivity and are made of a mixture of 10 wt%, 20 wt%, 30 wt%, 40 wt% pumice, 5 % expanded vermiculite, and clay. Pumice and vermiculite were added to the raw material of the soil brick as additives to create pores and provide thermal insulation in the buildings via the synergistic effect created by pumice and vermiculite. All of the raw materials were analyzed using XRF (X-ray Fluorescence), XRD (X-ray Diffraction), TG/DTA (Thermogravimetric/Differential Thermal Analysis), and SEM–EDS (Scanning Electron Microscopy-Energy Dispersive Spectrometry). Mixtures containing different concentrations of pumice and a constant concentration of vermiculite were prepared, dried, and fired at 950 °C for two hours. The properties of the samples were also examined: ignition loss, bulk density, apparent porosity, water absorption, compressive strength, thermal conductivity, and microstructure. The addition of pumice and expanded vermiculite dropped the samples’ bulk density from 1.93 g·cm−3 to 1.31 g·cm−3. As the addition of pumice and vermiculite increased, their porosity rates increased by 52 %, whilst their compressive strength decreased by 24 %. However, their compressive strength was higher than the value stated in the standards. The thermal conductivity of the samples containing 40 % pumice and 5 % vermiculite dropped from 1.041 W·m−1·K−1 to 0.439 W·m−1·K−1 exhibiting a decrease of 58 % compared to the reference sample. Consequently, the findings of this research reveal that pumice and vermiculite-added brick samples can be used as an insulation material in construction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

PW:

Paper waste

WMP:

Wast marble powder

CS:

Carbonation sluge

BA:

Bottom ash

FA:

Fly ash

TW:

Tea waste

CB:

Cigarette butts

EV:

Expanded vermiculite

EP:

Expanded perlite

SD:

Sawdust

WA:

Wood ash

LM:

Lime mud

PPR:

Paper pulp residues

CW:

Concrete waste

RHA:

Rice husk ash

OMW:

Olive mill waste

P:

Pumice

AP:

Apparent porosity

BD:

Bulk density

WA:

Water absorption

CS:

Compressive strength

TC:

Thermal conductivity

References

  1. V.C. Yosifova, Cybern. Robot. 68, 58 (2017)

    Google Scholar 

  2. M. Sutcu, J.J. del Coz Diaz, F.P. Alvarez Rabanal, O. Gencel, S. Akkurt, Energy Build. 75, 96 (2014)

    Article  Google Scholar 

  3. M. Sutcu, H. Alptekin, E. Erdogmus, Y. Er, O. Gencel, Constr. Build. Mater. 82, 1 (2015)

    Article  Google Scholar 

  4. A. Yaras, M. Sutcu, O. Gencel, E. Erdogmus, Constr. Build. Mater. 224, 57 (2019)

    Article  Google Scholar 

  5. S. Ozturk, M. Sutcu, E. Erdogmus, O. Gencel, Constr. Build. Mater. 217, 592 (2019)

    Article  Google Scholar 

  6. M. Sutcu, E. Erdogmus, O. Gencel, A. Gholampour, E. Atan, T. Ozbakkaloglu, J. Clean. Prod. 233, 753 (2019)

    Article  Google Scholar 

  7. A.A. Kadir, A. Mohajerani, F. Roddick, J. Buckeridge, World Acad. Sci Eng. Technol. 53, 1035 (2009)

    Google Scholar 

  8. A.M. Heniegal, M.A. Ramadan, A. Naguib, I.S. Agwa, Case Stud. Constr. Mater. 13, e00397 (2020)

    Google Scholar 

  9. M.A. Rahman, Int J. Cem. Compos. Lightweight Concr. 9, 105 (1987)

    Article  Google Scholar 

  10. D. Eliche-Quesada, F.A. Corpas-Iglesias, L. Pérez-Villarejo, F.J. Iglesias-Godino, Constr. Build. Mater. 34, 275 (2012)

    Article  Google Scholar 

  11. Z. Lianyang, Constr. Build. Mater. 47, 643 (2013)

    Article  Google Scholar 

  12. Z. Zipeng, W. YatChoy, A. Arulrajah, S. Horpibulsuk, Constr. Build. Mater. 188, 1101 (2018)

    Article  Google Scholar 

  13. C. Bories, M.E. Borredon, E. Vedrenne, G. Vilarem, J. Environ. Manag. 143, 186 (2014)

    Article  Google Scholar 

  14. P.V. Muñoz, M.P.O. Morales, M.A.G. Mendívil, L.V. Muñoz, Constr. Build. Mater. 63, 97 (2014)

    Article  Google Scholar 

  15. P.V. Muñoz, M.P.O. Morales, V.G. Letelier, M.A.G. Mendívil, Constr. Build. Mater. 125, 241 (2016)

    Article  Google Scholar 

  16. S.N. Monteiro, C.M.V. Fontes, Construct. Build. Mater. 68, 599 (2014)

    Article  Google Scholar 

  17. J.J. del Coz Diaz, F.P.A. Rabanal, O. Gencel, P.J.G. Nieto, M.A. Martinez, A.N. Manso, B.P. Gero, Energy Build. 70, 194 (2014)

    Article  Google Scholar 

  18. O. Gencel, Energy Build. 102, 217 (2015)

    Article  Google Scholar 

  19. F. Koksal, O. Gencel, M. Kaya, Constr. Build. Mater. 88, 175 (2015)

    Article  Google Scholar 

  20. M. Sutcu, Ceram. Int. 41, 2819 (2015)

    Article  Google Scholar 

  21. C. Arslan, O. Gencel, I. Borazan, M. Sutcu, E. Erdogmus, Constr. Build. Mater. 300, 124298 (2021)

    Article  Google Scholar 

  22. N. Phonphuak, J. Chem. Sci. Technol. 2, 95 (2013)

    Google Scholar 

  23. Turkish Standard Institution, Specification for Masonry Units in Part 1 (Clay Masonry Units, Ankara, 2012)

    Google Scholar 

  24. S. Top, H. Vapur, M. Altiner, D. Kaya, A. Ekicibil, J. Mol. Struct. 1202, 127236 (2020)

    Article  Google Scholar 

  25. K. Hossain, S. Ahmed, M. Lachemi, Constr. Build. Mater. 25, 1186 (2011)

    Article  Google Scholar 

  26. F. Koçyiğit, Int. J. Thermophys. 41, 1 (2020)

    Article  ADS  Google Scholar 

  27. F. Koçyiğit, V.V. Çay, Int. J. Thermophys. 41, 1 (2020)

    Article  Google Scholar 

  28. F. Koçyiğit, F. Ünal, Ş Koçyiğit, Energy Source A 42, 3063 (2020)

    Article  Google Scholar 

  29. A.E. Akan, F. Ünal, F. Koçyiğit, Int. J. Thermophys. 42, 1 (2021)

    Article  Google Scholar 

  30. V. Koci, Z. Bazantova, R. Cerny, Energy Build. 76, 211 (2014)

    Article  Google Scholar 

  31. O. Gencel, A. Sarı, A. Ustaoglu, G. Hekimoglu, E. Erdogmus, A. Yaras, M. Sutcu, V.V. Cay, Constr. Build. Mater. 308, 125062 (2021)

    Article  Google Scholar 

  32. M. Zukowski, G. Haese, Energy Build. 42, 1402 (2010)

    Article  Google Scholar 

  33. H. Kurmus, A. Mohajerani, Materials 13, 790 (2020)

    Article  ADS  Google Scholar 

  34. M. Jovanović, A. Mujkanović, E. Tutić, T. Volkov-Husović, Int. J. Energy Environ. 10, 281 (2019)

    Google Scholar 

  35. A. Georgiev, A. Yoleva, S. Djambazov, D. Dimitrov, V. Ivanova, J. Chem. Technol. Metall 53, 275 (2018)

    Google Scholar 

  36. M. Madrid, A. Orbe, E. Rojí, J. Cuadrado, Constr. Build. Mater. 153, 117 (2017)

    Article  Google Scholar 

  37. P. Munoz, V. Letelier, M.A. Bustamante, J. Marcos-Ortega, J.G. Sepúlveda, Appl. Clay Sci. 198, 105847 (2020)

    Article  Google Scholar 

  38. O. Gencel, E. Erdugmus, M. Sutcu, O.H. Oren, Constr. Build. Mater. 255, 119362 (2020)

    Article  Google Scholar 

  39. D. Eliche-Quesada, M.A. Felipe-Sese, J.A. Lopez-Perez, A. Infantes-Molina, Ceram. Int. 43, 463 (2017)

    Article  Google Scholar 

  40. M. Sutcu, S. Ozturk, E. Yalamac, O. Gencel, J. Environ. Manage. 185, 181 (2016)

    Google Scholar 

  41. M. Sutcu, S. Akkurt, Ceram. Int. 35, 2625 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Koçyiğit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçyiğit, F. Thermo-physical and Mechanical Properties of Clay Bricks Produced for Energy Saving. Int J Thermophys 43, 18 (2022). https://doi.org/10.1007/s10765-021-02951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02951-5

Keywords

Navigation