Skip to main content

Advertisement

Log in

Experimental Investigation of CO2 Hydrate Dissociation in Silica Nanoparticle System with Different Thermal Conductivity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Nanoparticles are termed as kinetic promoters with great application potential whose promotion effect exceeding that of surfactants in some cases. However, the effects on hydrate dissociation in nanoparticle system have been studied rarely. In the presence of nanoparticles, there are differences in the heat conduction of different systems, which may cause different hydrate dissociation behaviors. Herein, the dissociation kinetics under different systems were quantitatively characterized using gas production and activity energy. It was found that silica nanoparticle promotes the CO2 hydrate dissociation and the gas production increases with the increase of nanoparticle mass fraction. The activation energy in different silica nanoparticle systems of 50 nm 0.05–1.00 wt% increases with the decrease of nanoparticle concentration with the value changing from 72.05 ± 4.21 kJ·mol−1 to 122.25 ± 11.46 kJ·mol−1. Compared with pure carbon dioxide hydrate, the thermal conductivity of CO2 hydrate-silica nanoparticle systems increase by 2.4 % to 5.5 %. The thermal conductivity increases with the increase in concentration or the decrease in particle size. There is an approximately linear negative correlation between activation energy and thermal conductivity, that is, as the thermal conductivity increases, the activation energy decreases. The law of fluctuation and dissipation is the internal mechanism of hydrate dissociation and that was analyzed firstly in macroscopic experimental investigation. It was found that the fluctuation and dissipation of gas production in the near-equilibrium region can be used to predict the hydrate dissociation kinetics under non-equilibrium conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases (Chemical Industries Series), 3rd edn. (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  2. H. Zhou, I.D. Sera, C.I. Ferreira, Appl. Energy 158, 433 (2015). https://doi.org/10.1016/j.apenergy.2015.08.092

    Article  Google Scholar 

  3. X.L. Wang, D. Mike, Chem. Eng. Sci. 155, 294 (2016). https://doi.org/10.1016/j.ces.2016.08.020

    Article  Google Scholar 

  4. S.P. Kang, H. Lee, C.S. Lee, W.M. Sung, Fluid Phase Equilib. 185, 101 (2001). https://doi.org/10.1016/s0378-3812(01)00460-5

    Article  Google Scholar 

  5. H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, J. Environ. Sci. 20, 14 (2008). https://doi.org/10.1016/s1001-0742(08)60002-9

    Article  Google Scholar 

  6. Z. Ma, P.G. Ranjith, Fuel 255, 155644 (2019). https://doi.org/10.1016/j.fuel.2019.115644

    Article  Google Scholar 

  7. K.C. Kang, P. Linga, K.N. Park, S.J. Choi, J.D. Lee, Desalination 353, 84 (2014). https://doi.org/10.1016/j.desal.2014.09.007

    Article  Google Scholar 

  8. H. Matsui, J. Jia, T. Tsuji, Y. Liang, Y. Masuda, Fuel 263, 116640 (2020). https://doi.org/10.1016/j.desal.2014.09.007

    Article  Google Scholar 

  9. O. Mahian, E. Bellos, C.N. Markides, R.A. Taylor, A. Alagumalai, L. Yang, C. Qin, B.J. Lee, G. Ahmadi, M.R. Safaei, S. Wongwises, Nano Energy 86, 106069 (2021). https://doi.org/10.1016/j.nanoen.2021.106069

    Article  Google Scholar 

  10. O. Nashed, B. Partoon, B. Lal, K.M. Sabil, A.M. Shariff, J. Nat. Gas Sci. Eng. 55, 452 (2018). https://doi.org/10.1016/j.jngse.2018.05.022

    Article  Google Scholar 

  11. X. Huang, G. Ma, P. Wang, Pet. Sci. Technol. (2021). https://doi.org/10.1080/10916466.2021.1967387

    Article  Google Scholar 

  12. A.G. Aregbe, B. Sun, L. Chen, J. Chem. Eng. Data. 64, 2929 (2019). https://doi.org/10.1021/acs.jced.8b01173

    Article  Google Scholar 

  13. M. Yang, J. Zhao, J. Zheng, Y. Song, Appl. Energy 256, 113878 (2019). https://doi.org/10.1016/j.apenergy.2019.113878

    Article  Google Scholar 

  14. N. Adibi, M. Mohammadi, M.R. Ehsani, E. Khanmohammadian, J. Nat. Gas Sci. Eng. 84, 103690 (2020). https://doi.org/10.1016/j.jngse.2020.103690

    Article  Google Scholar 

  15. P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Energy Fuels 23, 5496 (2009). https://doi.org/10.1021/ef900542m

    Article  Google Scholar 

  16. W.X. Pang, W.Y. Xu, C.Y. Sun, C.L. Zhang, G.J. Chen, Fuel 88, 497 (2009). https://doi.org/10.1016/j.fuel.2008.11.002

    Article  Google Scholar 

  17. G.D. Holder, P.F. Angert, V.T. John, S. Yen, J. Pet. Technol. 34, 1127 (1982). https://doi.org/10.2118/8929-pa

    Article  Google Scholar 

  18. D.L. Li, H. Peng, D.Q. Liang, Int. J. Heat Mass Transfer. 104, 566 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.081

    Article  Google Scholar 

  19. X.Y. Li, X.S. Li, Y. Wang, J.W. Liu, H.Q. Hu, Energy 202, 117690 (2020). https://doi.org/10.1016/j.energy.2020.117690

    Article  Google Scholar 

  20. X. Kou, Y. Wang, X.S. Li, Y. Zhang, Z.Y. Chen, Appl. Energy 251, 113405 (2019). https://doi.org/10.1016/j.apenergy.2019.113405

    Article  Google Scholar 

  21. X.Y. Li, Y. Wang, X.S. Li, Y. Zhang, Z.Y. Chen, Int. J. Heat Mass Transfer. 144, 118528 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118528

    Article  Google Scholar 

  22. G.C. Song, Y.X. Li, W.C. Wang, K. Jiang, Z. Shi, X. Ye, P.F. Zhao, J. Nat. Gas Sci. Eng. 45, 26 (2017). https://doi.org/10.1016/j.jngse.2017.04.032

    Article  Google Scholar 

  23. V.A. Vlasov, Chem. Eng. Sci. 215, 115443 (2020). https://doi.org/10.1016/j.ces.2019.115443

    Article  Google Scholar 

  24. N.J. English, E.T. Clarke, J. Chem. Phys. 139, 094701 (2013). https://doi.org/10.1063/1.4819269

    Article  ADS  Google Scholar 

  25. M.R. Ghaani, N.J. English, J. Chem. Phys. 148, 114504 (2018). https://doi.org/10.1063/1.5018192

    Article  ADS  Google Scholar 

  26. M.R. Ghaani, N.J. English, Mol. Phys. 117, 2434 (2019). https://doi.org/10.1080/00268976.2019.1567845

    Article  ADS  Google Scholar 

  27. J. Li, Z.L. Wang, Phys. Chem. Chem. Phys. 21, 23492 (2019). https://doi.org/10.1039/c9cp04780h

    Article  Google Scholar 

  28. M.F. Fakoya, S.N. Shah, Petroleum 3, 391 (2017). https://doi.org/10.1016/j.petlm.2017.03.001

    Article  Google Scholar 

  29. Z.L. Wang, D.W. Tang, S. Liu, X.H. Zheng, N. Araki, Int. J. Thermophys. 28, 1255 (2007). https://doi.org/10.1007/s10765-007-0254-3

    Article  ADS  Google Scholar 

  30. V.D. Chari, D. Sharma, P. Prasad, S.R. Murthy, J. Nat. Gas Sci. Eng. 11, 7 (2013). https://doi.org/10.1016/j.jngse.2012.11.004

    Article  Google Scholar 

  31. E. Chaturvedi, K. Patidar, S. Laik, A. Mandal, Mar. Georesour. Geotechnol. 37, 57 (2019). https://doi.org/10.1080/1064119x.2018.1443181

    Article  Google Scholar 

  32. D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976). https://doi.org/10.1021/i160057a011

    Article  Google Scholar 

  33. R.G. Ross, P. Andersson, G. Bäckström, Nature 290, 322 (1981). https://doi.org/10.1038/290322a0

    Article  ADS  Google Scholar 

  34. G. Yao, Study on thermal physical properties of gas hydrate, China University of Petroleum (East China), (2015). www.cnki.net

  35. D.W. Tang, Z.L. Wang, Characterization of Thermophysical Properties of Micro-Nano Materials and Structures (Science Press, Beijing, 2010)

    Google Scholar 

  36. Y.M. Xuan, Sci. Sin. Technol. 44, 269 (2014). https://doi.org/10.1360/092013-1236

    Article  Google Scholar 

  37. X. Zhou, Z. Long, S. Liang, Y. He, L. Yi, D. Li, D. Liang, Energy Fuels 30, 1279 (2016). https://doi.org/10.1021/acs.energyfuels.5b02119

    Article  Google Scholar 

  38. N.J. English, G.M. Phelan, J. Chem. Phys. 131, 074704 (2009). https://doi.org/10.1063/1.3211089

    Article  ADS  Google Scholar 

  39. E.M. Myshakin, H. Jiang, R.P. Warzinski, K.D. Jordan, J. Phys. Chem. A 113, 1913 (2009). https://doi.org/10.1021/jp807208z

    Article  Google Scholar 

  40. C. Sun, C. Ma, G. Chen, T. Guo, J. Univ. Pet. (China) 25(3), 8 (2001)

    Google Scholar 

  41. M.A. Clarke, P.R. Bishnoi, Chem. Eng. Sci. 59, 2983 (2004). https://doi.org/10.1016/j.ces.2004.04.030

    Article  Google Scholar 

  42. Q.C. Wan, L.L. Chen, B. Li, K. Peng, Y.Q. Wu, Ind. Eng. Chem. Res. 59, 10651 (2020). https://doi.org/10.1021/acs.iecr.0c00705

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding supports from National Natural Science Foundation of China (No. 51876223), Natural Science Foundation of Shandong Province (No. ZR201807060413)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-liang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Lj., Wan, Rc. & Wang, Zl. Experimental Investigation of CO2 Hydrate Dissociation in Silica Nanoparticle System with Different Thermal Conductivity. Int J Thermophys 42, 170 (2021). https://doi.org/10.1007/s10765-021-02920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02920-y

Keywords

Navigation