Skip to main content
Log in

Experimental Investigations on Stability and Viscosity of Carboxymethyl Cellulose (CMC)-Based Non-Newtonian Nanofluids with Different Nanoparticles with the Combination of Distilled Water

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents the experimental analysis of stability and rheological studies of three different types of nanoparticles (Al2O3, CuO, and TiO2) with carboxymethyl cellulose (CMC)-based nanofluids. The two-step method was adopted for the preparation of nanofluids. In the present study, nanoparticles were characterized by X-ray diffraction (XRD) analysis. The sedimentation tests and UV–Vis absorbance tests were performed to predict the stability of nanofluids. For all prepared nanofluids when CMC concentration was zero, TiO2 nanofluids was found to be more stable in the visual tests for a period of 18–20 days and CMC (0.4 % by weight) -based TiO2 nanofluid took 28–30 days to sediment. For rheological study of nanofluids, viscosity was measured under the influence of increasing particle concentration (0.01 % to 0.04 %) and increasing temperature (25 °C to 55 °C). The experimental results reveal that on increasing particle concentration the viscosity of nanofluids increases by 27 %, 21.5 % and 17.4 % for TiO2, Al2O3 and CuO nanofluids respectively as compared to the base fluid. While on the increasing temperature from 25 °C to 55 °C, the viscosity of nanofluids decreases by 11 %, 12 % and 9 % for Al2O3, CuO, and TiO2, respectively. Moreover, from the shear stress vs. shear rate trends, it was concluded that all three nanofluids exhibit pseudoplastic or shear-thinning nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

w:

Weight, (g)

K :

Shape factor

D:

Average particle size, (nm)

Al2O3 :

Aluminium oxide

CuO:

Copper oxide

TiO2 :

Titanium oxide

CMC:

Carboxymethyl cellulose

n :

Flow behavior index

m :

Consistency index

\(\rho\) :

Density of fluid, (kg·m3)

ϕ :

Nanoparticle volume concentration

τ :

Shear stress

μ :

Dynamic viscosity, (Pa-s)

β :

Peak width at half the maximum height

\(\dot{\gamma }\) :

Shear rate, (1·s1)

λ:

Wavelength, (Å)

θ:

Diffraction angle

bf:

Base fluid

nf:

Nanofluid

np:

Nanoparticle

References

  1. S.U. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29) (Argonne National Lab., Lemont, 1995)

    Google Scholar 

  2. M. Chandrasekar, S. Suresh, A.C. Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci. 34, 210–216 (2010)

    Article  Google Scholar 

  3. R.A. Bhogare, B.S. Kothawale, A review on applications and challenges of nano-fluids as coolant in automobile radiator. Int. J. Sci. Res. Publ. 3, 1–11 (2013)

    Google Scholar 

  4. I. Wole-Osho, E.C. Okonkwo, S. Abbasoglu, D. Kavaz, Nanofluids in solar thermal collectors: review and limitations. Int. J. Thermophys. 41, 1–74 (2020)

    Article  Google Scholar 

  5. A.K. Rasheed, M. Khalid, W. Rashmi, T.C.S.M. Gupta, A. Chan, Graphene based nanofluids and nanolubricants–review of recent developments. Renew. Sustain. Energy Rev. 63, 346–362 (2016)

    Article  Google Scholar 

  6. J. Huang, Z. Chen, Z. Du, X. Xu, Z. Zhang, X. Fang, A highly stable hydroxylated graphene/ethylene glycol-water nanofluid with excellent extinction property at a low loading for direct absorption solar collectors. Thermochim. Acta 684, 178487 (2020)

    Article  Google Scholar 

  7. E.C. Okonkwo, I. Wole-Osho, I.W. Almanassra, Y.M. Abdullatif, T. Al-Ansari, An updated review of nanofluids in various heat transfer devices. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09760-2

    Article  Google Scholar 

  8. H. Lamraoui, K. Mansouri, R. Saci, Numerical investigation on fluid dynamic and thermal behavior of a non-Newtonian Al2O3–water nanofluid flow in a confined impinging slot jet. J. Nonnewton Fluid Mech. 265, 11–27 (2019)

    Article  Google Scholar 

  9. M.U. Sajid, H.M. Ali, A. Sufyan, D. Rashid, S.U. Zahid, W.U. Rehman, Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J. Therm. Anal. Calorim. 137, 1279–1294 (2019)

    Article  Google Scholar 

  10. M.H. Esfe, S. Esfandeh, M.K. Amiri, M. Afrand, A novel applicable experimental study on the thermal behavior of SWCNTs (60%)-MgO (40%)/EG hybrid nanofluid by focusing on the thermal conductivity. Powder Technol. 342, 998–1007 (2019)

    Article  Google Scholar 

  11. B.K. Bharath, V.A.M. Selvan, An Experimental investigation on rheological and heat transfer performance of hybrid nanolubricant and its effect on the vibration and noise characteristics of an automotive spark-ignition engine. Int. J. Thermophys. 42, 1–30 (2021)

    Article  Google Scholar 

  12. M.U. Sajid, H.M. Ali, Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew. Sustain. Energy Rev. 103, 556–592 (2019)

    Article  Google Scholar 

  13. G.M. Moldoveanu, A.A. Minea, M. Iacob, C. Ibanescu, M. Danu, Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid. Thermochim. Acta 659, 203–212 (2018)

    Article  Google Scholar 

  14. V.S. Raykar, A.K. Singh, Thermal and rheological behavior of acetylacetone stabilized ZnO nanofluids. Thermochim. Acta 502, 60–65 (2010)

    Article  Google Scholar 

  15. A. Turgut, I. Tavman, M. Chirtoc, H.P. Schuchmann, C. Sauter, S. Tavman, Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int. J. Thermophys. 30, 1213–1226 (2009)

    Article  ADS  Google Scholar 

  16. U. Teipel, U. Förter-Barth, Rheology of nano-scale aluminium suspensions. Propellants Explos. Pyrotech. 26, 268–272 (2001)

    Article  Google Scholar 

  17. A.H. Saeedi, M. Akbari, D. Toghraie, An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation. Physica E 99, 285–293 (2018)

    Article  ADS  Google Scholar 

  18. N. Jamshidi, M. Farhadi, D.D. Ganji, K. Sedighi, Experimental investigation on the viscosity of nanofluids. Ije Trans. B 25, 201–209 (2012)

    Google Scholar 

  19. A. Beheshti, M. Shanbedi, S. ZeinaliHeris, Heat transfer and rheological propertiesof transformer oil-oxidized MWCNT nanofluid. J. Therm. Anal. Calorim. 118, 1451–1460 (2014)

    Article  Google Scholar 

  20. L.S. Sundar, E. Venkata Ramana, M.K. Singh, A.C.M. Sousa, Thermal conductivityand viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids forheat transfer applications: an experimental study. Int. Commun. Heat Mass Transf. 56, 86–95 (2014)

    Article  Google Scholar 

  21. M. Hemmat Esfe, S. Saedodin, S. Wongwises, D. Toghraie, An experimental study onthe effect of diameter on thermal conductivity and dynamic viscosity of Fe/waternanofluids. J. Therm. Anal. Calorim. 119, 1817–1824 (2015)

    Article  Google Scholar 

  22. A.V. Minakov, V.Y. Rudyak, M.I. Pryazhnikov, Rheological behaviour of water and ethylene glycol based nanofluids containing oxide nanoparticles. Colloids Surf. A 554, 279–285 (2018)

    Article  Google Scholar 

  23. X. Liu, H.I. Mohammed, A.Z. Ashkezari, A. Shahsavar, A.K. Hussein, S. Rostami, An experimental investigation on the rheological behavior of nanofluids made by suspending multi-walled carbon nanotubes in liquid paraffin. J. Mol. Liq. 300, 112269 (2020)

    Article  Google Scholar 

  24. S. Chakraborty, P.K. Panigrahi, Stability of nanofluid: a review. Appl. Ther. Eng. 174, 115259 (2020)

    Article  Google Scholar 

  25. A. Ijam, R. Saidur, P. Ganesan, A.M. Golsheikh, Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. Int. J. Heat Mass Transf. 87, 92–103 (2015)

    Article  Google Scholar 

  26. R. Ranjbarzadeh, A. Akhgar, S. Musivand, M. Afrand, Effects of graphene oxide-silicon oxide hybrid nanomaterials on rheological behavior of water at various time durations and temperatures: synthesis, preparation and stability. Powder Technol. 335, 375–387 (2018)

    Article  Google Scholar 

  27. M. Shanbedi, S. Zeinali Heris, A. Maskooki, Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants. J. Therm. Anal. Calorim. 120, 1193–1201 (2015)

    Article  Google Scholar 

  28. N. Asokan, P. Gunnasegaran, V.V. Wanatasanappan, Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles. Therm. Sci. Eng. Progress 20, 100727 (2020)

    Article  Google Scholar 

  29. M. Aleem, M.I. Asjad, A. Shaheen, I. Khan, MHD Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and Newtonian heating. Chaos Solitons Fractals 130, 109437 (2020)

    Article  MathSciNet  Google Scholar 

  30. A. Vasishth, N. Aggarwal, Heat transfer model to study nanofluids & its application. Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.09.014

    Article  Google Scholar 

  31. I. Kazemi, M. Sefid, M. Afrand, A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: characterization, stability and viscosity measurements. Powder Technol. 366, 216–229 (2020)

    Article  Google Scholar 

  32. H. Chang, C.S. Jwo, P.S. Fan, S.H. Pai, Process optimization and material properties for nanofluid manufacturing. Int. J. Adv. Manuf. Technol. 34, 300–306 (2007)

    Article  Google Scholar 

  33. C.F. Holder, R.E. Schaak, Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano (2019). https://doi.org/10.1021/acsnano.9b05157

    Article  Google Scholar 

  34. P. Sammaiah, V. Ashwini, A. Suresh, C. Sushanth, N.S. Kumar, Analysis of Al2O3 nanoparticles and its deposition on steel by cold spray process. Mater. Today: Proc. 5, 20535–20543 (2018)

    Google Scholar 

  35. A. Asadi, I.M. Alarifi, L.K. Foong, An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid. J. Mol. Liq. 307, 112987 (2020)

    Article  Google Scholar 

  36. N. Ali, J.A. Teixeira, A. Addali, A review on nanofluids: fabrication, stability, and thermophysical properties. J. Nanomater. (2018). https://doi.org/10.1155/2018/6978130

    Article  Google Scholar 

  37. A. Benchabane, K. Bekkour, Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym. Sci. 286, 1173 (2008)

    Article  Google Scholar 

  38. A. Einstein, Investigations on the Theory of the Brownian Movement (Courier Corporation, North Chelmsford, 1956)

    MATH  Google Scholar 

  39. H.C. Brinkman, The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–571 (1952)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainith, P., Mishra, N.K. Experimental Investigations on Stability and Viscosity of Carboxymethyl Cellulose (CMC)-Based Non-Newtonian Nanofluids with Different Nanoparticles with the Combination of Distilled Water. Int J Thermophys 42, 137 (2021). https://doi.org/10.1007/s10765-021-02890-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02890-1

Keywords

Navigation