Skip to main content
Log in

Exergy Analysis and Economical Study on Using Twisted Tape Inserts in CGS Gas Heaters

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This experimental assessment aims to study the impact of twisted tape insert on city gas station (CGS) heaters performance. The interesting point in this study is that the unflavored pressure drop in many cases of using tube inserts is quite favor in this case. In other words, this insert is used in a station whose primary duty is to heat the natural gas and reduce its pressure, and the insert does a part of the pressure reduction besides enhances the heat transfer rate. The effects of twist ratio and heater water temperature on the heater performance features are assessed, and the outcomes are compared with those without inserts case. The outcomes indicated that the use of insert entails an intensification in the heater performance by up to 16% and the best heat transfer enhancement belonged to the insert with the twist ratio of 1.05 at the heater water temperature of 35 °C. In addition, the economic analysis revealed that the capital return rate and the time of the return of capital are quite desirable. Furthermore, the exergy analysis showed that the destroyed exergy diminishes by using the twisted tape insert, and the higher the twist ratio and heater water temperature, the less the destroyed exergy. This is because a CGS unit duty is reducing pressure, and using an insert can be helpful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A:

area, m2

Cp:

specific heat KJ·(Kg °k)−1

Dh:

hydraulic diameter of tube, (m)

Eair :

Air exergy , (kW)

Efuel :

Fuel exergy , (kW)

Ed :

exergy destruction rate, (kW)

Eexh :

the outlet exergy from the heater exhaust, (kW)

ENG IN :

Natural gas exergy inlet, (kW)

ENG OUT :

Natural gas exergy outlet, (kW)

ech :

chemical exergy, (kJ)

ep fh :

physical exergy , (kJ)

f:

friction factor

H:

convection heat transfer coefficient, W·(m2 °k)−1

h:

specific enthalpy in a specific temperature, (kJ·kg2)

ho :

specific enthalpy in ambient temperature, (kJ·kg2)

k:

thermal conductivity, W·(m °k)−1

L:

length of tube , (m)

M:

molecular weight , (kg·kmol−1)

mNG :

mass flow rate of the natural gas , (kg·s−1)

m:

mass flow rate , (kg·s−1)

n:

molar flow rate , (mol·s−1)

Qk :

rate of heat transfer at the source temperature, (kJ·s−1)

Qh :

heat transfer rate produced by the heater, (kW)

p:

Pressure , (bar)

po :

ambient pressure , (bar)

R:

universal gas constant, (psi/(m3·K−1)

S:

specific entropy in a specific temperature, (kJ·kg−1)

so :

specific entropy in ambient temperature, (kJ·kg−1)

T:

temperature (°C or °k )

Tb :

the bulk water temperature, (°k)

To :

ambient temperature, (°k)

Ts :

surface temperature, (°k)

Tw :

heater water temperature (°C)

u:

mean flow velocity, (m·s−1)

W:

rate of work done , (kJ)

y:

twist ratio

yt :

molar ratio

Z:

compressibility factor

C.G.S:

City Gas station

CRR:

Capital Return Rate (year−1)

LHVf :

low calorific value of the fuel

Num :

average Nusselt number

Re:

Reynolds number

SCMH:

Standard Cubic Meters per Hour

Sgen :

entropy produced in the system.

TRC:

Time of Return of Capital, (year)

wsh max :

Maximum work of chemical reaction

ρ:

density, (kg·m−3)

μ :

dynamic viscosity, kg·(ms)−1

∆E ̇_(f-t):

fire tube exergy balance, (kW)

∆E ̇_NG:

Natural gas exergy balance, (kW)

ΔG:

Gibbs free energy, (kj)

η:

Exergy efficiency

η_th:

heater thermal efficiency

ΔP:

pressure drop, (bar)

∆T_e:

Enhanced temperature difference (°C)

References

  1. B. Ranjbar, E. Jafarbeigi, M. Kazemi, J. Int, Advanced Biotechnology and Research. 7, 1030–1036 (2016)

    Google Scholar 

  2. M. Farzaneh-Gord, S. Hashemi, M. Sadi, J. Energy Exploration & Exploitation. 25, 393–406 (2007)

    Article  Google Scholar 

  3. Mageshbabu D, Kabeel A, J. Heat Transfer Research. l50, 851–863 (2019).

  4. N. Zozulya, I.Y. Shkuratov, J. Heat Transfer-Sov Res. 6, 98–100 (1974)

    Google Scholar 

  5. A. Kumar, B. Prasad, J. Renewable energy. 19, 379–398 (2000)

    Article  Google Scholar 

  6. P.K. Sarma, P.S. Kishore, V.D. Rao, T. Subrahmanyam, Int. J. Thermal Sciences. 44, 393–398 (2005)

    Article  Google Scholar 

  7. Eiamsa-Ard S, Promvonge P, Int. J. Communications in Heat and Mass Transfer. 34, 176–185 (2007) .

  8. A.R.S. Suri, A. Kumar, R. Maithani, J. Chemical Engineering and Processing. 116, 76–96 (2017)

    Article  Google Scholar 

  9. C. Thianpong, P. Eiamsa-Ard, S. Eiamsa-Ard, J. Heat and Mass Transfer. 48, 881–892 (2012)

    Article  ADS  Google Scholar 

  10. Ranjith, Shaji K, J. Procedia. Technol. 24, 436–443 (2016).

  11. M. Rahimi, S.R. Shabanian, A.A. Alsairafi, J. Chemical Engineering and Processing. 48, 762–770 (2009)

    Article  Google Scholar 

  12. A. Dewan, P. Mahanta, K.S. Raju, P.S. Kumar, J. Power and Energy. 218, 509–527 (2004)

    Article  Google Scholar 

  13. Shabanian S, Rahimi M, Shahhosseini M, Alsairafi A, Int. J. Communications in Heat and Mass Transfer. 38, 383–390 (2011) .

  14. A. Feizabadi, M. Khoshvaght-Aliabadi, A.B. Rahimi, Int. J. Thermal Sciences. 145, 106051 (2019)

    Article  Google Scholar 

  15. A.M. Jacobi, R.K. Shah, J. Experimental Thermal and Fluid Science. 11, 295–309 (1995)

    Article  Google Scholar 

  16. A. Geete, J. Exergy, Heat Transfer Research. 48, 1625–1636 (2017)

    Article  Google Scholar 

  17. Bejan A , Advanced engineering thermodynamics. John Wiley & Sons. (2016) .

  18. M. Farzaneh-Gord, A. Arabkoohsar, M.D. Dasht-bayaz, L. Machado, R. Koury, J. Renewable Energy. 72, 258–270 (2014)

    Article  Google Scholar 

  19. M. Farzaneh-Gord, R. Ghezelbash, A. Arabkoohsar, L. Pilevari, L. Machado, R. Koury, J. Energy. 83, 1–13 (2015)

    Article  Google Scholar 

  20. T.J. Kotas, The Exergy Method of Thermal Plant Analysis (Florida, Krieger Publishing Company, Malabar, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, B., Rahimi, M. & Mohammadi, F. Exergy Analysis and Economical Study on Using Twisted Tape Inserts in CGS Gas Heaters. Int J Thermophys 42, 99 (2021). https://doi.org/10.1007/s10765-021-02848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02848-3

Keywords

Navigation