Skip to main content

Advertisement

Log in

Distilled Water-Based AlN + ZnO Binary Hybrid Nanofluid Utilization in a Heat Pipe and Investigation of Its Effects on Performance

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The preparation and utilization of hybrid nanofluids in thermal systems have become popular nowadays owing to their improved thermophysical properties. Although a nanofluid suspension increases the performance of the thermal system, hybrid nanofluids improve the heat transfer performance more by removing the disadvantages of each component. The aqueous hybrid nanofluids consisting of AlN and ZnO nanoparticles were prepared under various mixing rates and tested in a wickless, thermosiphon-type heat pipe under various circumstances. The effects of both unary and hybrid utilization of nanoparticles in the nanofluid preparation process were taken into consideration. The hybrid nanofluids were prepared in the mixing ratios of 25:75, 50:50, and 75:25 for AlN and ZnO nanoparticles, respectively. The experiments were run by applying 3 different heating powers to the evaporator section, and three different cooling tap water mass flow rates to the condenser section. Temperature distributions on all heat pipe sections were monitored, efficiency and thermal resistance values for each unary and hybrid nanofluids were specified. The results showed that hybrid utilization of nanoparticles enhanced heat pipe characteristics more compared to its unary counterparts. The maximum decrement of 40.79 % was obtained in thermal resistance of the heat pipe under 150 W, 6 g·s−1 conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

con :

Condenser

evp :

Evaporator

i :

inlet

:

Mass flow rate (g·s−1)

o :

outlet

tw :

Tap water

R :

Thermal resistance (K·W−1)

\(\dot{Q}\) :

Heat transfer rate (W)

T :

Temperature (°C)

T :

Temperature difference (°C)

η :

Efficiency

CNT:

Carbon nanotube

MWCNT:

Multi-walled carbon nanotube

SEM:

Scanning electron microscopy

References

  1. M. Bahiraei, A. Monavari, Appl. Therm. Eng. 179, 115621 (2020)

    Article  Google Scholar 

  2. Z. Said, S.M.A. Rahman, M.E. Assad, A.H. Alami, Sustain. Energy Technol. 31, 306 (2019)

    Google Scholar 

  3. Y.L. Cui, W. Wang, B.X. Li, D.H. Zuo, Int. J. Heat Mass Transfer 159, 120084 (2020)

    Article  Google Scholar 

  4. A. Khanlari, A. Sözen, H.İ Variyenli, M. Gürü, Heat Transf. Res. 50, 435 (2018)

    Article  Google Scholar 

  5. T.P. Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, R.A. Taylor, J. Renew. Sustain. Energy 2, 033102 (2010)

    Article  Google Scholar 

  6. M. Tahari, A. Ghorbanian, M. Hatami, D. Jing, Eur. Phys. J. Plus 132, 549 (2017)

    Article  Google Scholar 

  7. K.X. Wang, Y. He, P.Y. Liu, A.K. Kan, Z.H. Zheng, L.L. Wang, H.Q. Xie, W. Yu, Renew. Energy 159, 652 (2020)

    Article  Google Scholar 

  8. İ Aytaç, A. Sözen, Journal of Polytechnic-Politeknik Dergisi (2020). https://doi.org/10.2339/politeknik.703083

    Article  Google Scholar 

  9. A. Sözen, A. Öztürk, M. Özalp, E. Çiftçi, Int. J. Environ. Sci. Technol. 16, 5095 (2019)

    Article  Google Scholar 

  10. H.M. Ali, Hybrid Nanofluids for Convection Heat Transfer (Elsevier, New York, 2020), pp. 18–20. https://doi.org/10.1016/C2018-0-04602-2

    Book  Google Scholar 

  11. K. Martin, A. Sözen, E. Çiftçi, H.M. Ali, Int. J. Thermophys. 41, 135 (2020)

    Article  ADS  Google Scholar 

  12. M.F. Nabil, W.H. Azmi, K.A. Hamid, R. Mamat, Int. J. Heat Mass Transfer 124, 1361 (2018)

    Article  Google Scholar 

  13. A.A. Hussien, N.M. Yusop, M.A. Al-Nimr, M.Z. Abdullah, A.A. Janvekar, M.H. Elnaggar, Iran J. Sci. Technol. Trans. A Sci. 43, 1989 (2019)

    Article  Google Scholar 

  14. D. Huang, Z. Wu, B. Sunden, Exp. Therm. Fluid Sci. 72, 190 (2016)

    Article  Google Scholar 

  15. M. Nuim Labib, M.J. Nine, H. Afrianto, H. Chung, H. Jeong, Int. J. Therm. Sci. 71, 163 (2013)

    Article  Google Scholar 

  16. A.A. Minea, Int. J. Heat Mass Transfer 104, 852 (2017)

    Article  Google Scholar 

  17. E. Bellos, C. Tzivanidis, Sustain. Energy Technol. 26, 105 (2018)

    Google Scholar 

  18. T.T. Hao, H.B. Ma, X.H. Ma, J Heat Trans-T ASME 141, 071802 (2019)

    Article  Google Scholar 

  19. Y.Y. Xu, Y.Q. Xue, H. Qi, W.H. Cai, Int. J. Heat Mass Transfer 157, 119727 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119727

    Article  Google Scholar 

  20. M. Zufar, P. Gunnasegaran, H.M. Kumar, K.C. Ng, Int. J. Heat Mass Transfer 146, 118887 (2020)

    Article  Google Scholar 

  21. R.K. Bumataria, N.K. Chavda, H. Panchal, Heliyon 5, e01627 (2019)

    Article  Google Scholar 

  22. R. Ramachandran, K. Ganesan, M.R. Rajkumar, L.G. Asirvatham, S. Wongwises, Int. Commun. Heat Mass. 76, 294 (2016)

    Article  Google Scholar 

  23. M.R. Tanshen, S. Lee, J. Kim, D. Kang, J. Noh, H. Chung, H. Jeong, D. Huh, J. Cent, South Univ. 21, 2341 (2014)

    Article  Google Scholar 

  24. J.P. Holman, Experimental Methods for Engineers, 7th edn. (McGraw-Hill Book Co., New York, NY, 2001).

    Google Scholar 

  25. A. Sözen, A. Khanları, E. Çiftçi, Proc. Inst. Mech. Eng. Part A 233, 626 (2019)

    Article  Google Scholar 

  26. A. Sözen, M. Gürü, T. Menlik, U. Karakaya, E. Çiftçi, Exp. Heat Transfer 31, 450 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdem Çiftçi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çiftçi, E. Distilled Water-Based AlN + ZnO Binary Hybrid Nanofluid Utilization in a Heat Pipe and Investigation of Its Effects on Performance. Int J Thermophys 42, 38 (2021). https://doi.org/10.1007/s10765-021-02792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02792-2

Keywords

Navigation