Skip to main content
Log in

Model for Predicting the Thermal Conductivity of Concrete

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conductivity of concrete greatly influences the heat transfer of buildings and affected by many factors. This paper presents a prediction model for thermal conductivity of concrete by adopting the theory of Wiener bounds and considering concrete to have four components (water, air, aggregate, and cement mortar). The proposed model considers the combined effects of porosity, water saturation, and the volume fraction of aggregate on the thermal conductivity of concrete by weighting parameters of \({\eta }_{1}\), \({\eta }_{2}\), \({\eta }_{3}\), respectively. By adjusting the weighting parameters of each component, the model can consider the influence of various factors on the thermal conductivity of concrete more comprehensively. Thermal conductivity of each component and expression of weighting parameters are determined by literature and experiments. The proposed model has been verified by the measured thermal conductivity of concrete under different porosities, water content, and volume fractions of aggregate with the prediction accuracy of \(\pm 12\mathrm{\%}\). Finally, the regularity of the change in the thermal conductivity of concrete with porosity, water saturation, the volume fraction of aggregate, and temperature is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Campbell-Allen, C.P. Thorne, The thermal conductivity of concrete. Mag. Concr. Res. 53(43), 371–372 (1963). https://doi.org/10.1007/978-1-4615-8789-7_45

    Article  Google Scholar 

  2. M.I. Khan, Factors affecting the thermal properties of concrete and applicability of its prediction models. Build. Environ. 37(6), 607–614 (2002). https://doi.org/10.1016/S0360-1323(01)00061-0

    Article  Google Scholar 

  3. L. Tinker, J.G. Cabrera, Modeling the thermal conductivity of concrete based on its measured density and porosity. Buildings V. Conference Proceedings. 91–95 (1992)

  4. I. Asadi, P. Shafigh, Z.F.B.A. Hassan, N.B. Mahyuddin, Thermal conductivity of concrete—a review. J. Build. Eng. 20, 81–93 (2018). https://doi.org/10.1016/j.jobe.2018.07.002

    Article  Google Scholar 

  5. B. Li, W. Xu, F. Tong, Measuring thermal conductivity of soils based on least squares finite element method. Int. J. Heat Mass Transf. 115, 833–841 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.056

    Article  Google Scholar 

  6. O.K. Nusier, N.H. Abu-Hamdeh, Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf. 39(2), 119–123 (2003). https://doi.org/10.1007/s00231-002-0295-x

    Article  ADS  Google Scholar 

  7. L. Vozár, T. Šrámková, Two data reduction methods for evaluation of thermal diffusivity from step-heating measurements. Int. J. Heat Mass Transf. 40(7), 1647–1655 (1997). https://doi.org/10.1016/S0017-9310(96)00138-X

    Article  MATH  Google Scholar 

  8. S.E. Gustafsson, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62(3), 797–804 (1991). https://doi.org/10.1063/1.1142087

    Article  ADS  Google Scholar 

  9. T. Log, S.E. Gustafsson, Transient Plane Source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater. 19(1), 43–49 (1995). https://doi.org/10.1002/fam.810190107

    Article  Google Scholar 

  10. G. Pia, U. Sanna, A geometrical fractal model for the porosity and thermal conductivity of insulating concrete. Constr. Build. Mater. 44, 551–556 (2013). https://doi.org/10.1016/j.conbuildmat.2013.03.049

    Article  Google Scholar 

  11. A.D. Brailsford, K.G. Major, The thermal conductivity of aggregates of several phases, including porous materials. Br. J. Appl. Phys. 15(3), 313 (1964). https://doi.org/10.1088/0508-3443/15/3/311

    Article  ADS  Google Scholar 

  12. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. II. (Oxford University Press, 1937)

  13. A. Simpson, A.D. Stuckes, Thermal conductivity of porous materials: I theoretical treatment of conduction processes. Build. Serv. Eng. 7(2), 78–86 (1986). https://doi.org/10.1177/014362448600700204

    Article  Google Scholar 

  14. D.A.G. Bruggeman, Calculation of Various Physics Constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24(7), 636–664 (1935). https://doi.org/10.1002/andp.19354160802

    Article  Google Scholar 

  15. D.P.H. Hasselman, L.F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21(6), 508–515 (1987). https://doi.org/10.1177/002199838702100602

    Article  ADS  Google Scholar 

  16. W. Zhang, H. Min, X. Gu, Y. Xi, Y. Xing, Mesoscale model for thermal conductivity of concrete. Constr. Build. Mater. 98, 8–16 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.106

    Article  Google Scholar 

  17. W.P. Zhang, Y.S. Xing, X.L. Gu, Theoretical models of effective thermal conductivity of concrete based on composite materials in mesoscale (in Chinese). Struct. Eng. 28(2), 39–45 (2012). https://doi.org/10.15935/j.cnki.jggcs.2012.02.003

    Article  Google Scholar 

  18. Y.Y. Wang, C. Ma, Y.F. Liu, D.J. Wang, J.P. Liu, Effect of moisture content on thermal conductivity of concretes (in Chinese). J. Build. Mater. 21(4), 595–599 (2018)

    Google Scholar 

  19. K.H. Kim, S.E. Jeon, J.K. Kim, S. Yang, An experimental study on thermal conductivity of concrete. Cem. Concr. Res. 33(3), 363–371 (2003). https://doi.org/10.1016/S0008-8846(02)00965-1

    Article  Google Scholar 

  20. P. Meshgin, Y. Xi, Multi-scale composite models for the effective thermal conductivity of PCM-concrete. Construct. Build. Mater. 48, 371–378 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.068

    Article  Google Scholar 

  21. R.M. Christensen, Mechanics of Composite Materials (Dover Publications Inc, Mineola, New York, 1979)

    Google Scholar 

  22. Y.Z. Tan, Y.X. Liu, P.Y. Wang, Y. Zhang, A predicting model for thermal conductivity of high permeability-high strength concrete materials. Geomech. Eng. 10(1), 49–57 (2016). https://doi.org/10.12989/gae.2016.10.1.049

    Article  Google Scholar 

  23. H.Q. Jin, X.L. Yao, L.W. Fan, X. Xu, Z.T. Yu, Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: effects of moisture content. Int. J. Heat Mass Transf. 92, 589–602 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.103

    Article  Google Scholar 

  24. F. Tong, L. Jing, R.W. Zimmerman, An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow. Int. Rock Mech. Mining Sci. 46(8), 1358–1369 (2009). https://doi.org/10.1016/j.ijrmms.2009.04.010

    Article  Google Scholar 

  25. O. Wiener, Der Abhandlungen Der Mathematisch-Physischen Klasse Der Konigl. Sachsischen Gesellshaft Der Wissenschaften. 32, 509–604 (1912)

    Google Scholar 

  26. R.W. Zimmerman, Thermal conductivity of fluid-saturated rocks. J. Petrol. Sci. Eng. 3(3), 219–227 (1989). https://doi.org/10.1016/0920-4105(89)90019-3

    Article  Google Scholar 

  27. Ganjian, and Esmaiel. The Relationship between Porosity and Thermal Conductivity of Concrete (University of Leeds, 1990)

  28. R. Demirboga, A. Kan, Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes. Construct. Build. Mater. 35, 730–734 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.105

    Article  Google Scholar 

  29. M.L.V. Ramires, C.A.N. Castro, Y. Nagasaka, A. Nagashima, M.J. Assael, W.A. Wakeham, Standard reference data for the thermal conductivity of water. J. Phys. Chem. Ref. Data 24(3), 1377–1381 (1995). https://doi.org/10.1063/1.555963

    Article  ADS  Google Scholar 

  30. R.T. Jacobsen, E.W. Lemmon, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25(1), 21–69 (2003)

    Google Scholar 

  31. T.Z. Harmathy, Thermal Properties of Concrete at Elevated Temperatures. Journal of Materials 5(1), 47–74 (1970)

    Google Scholar 

  32. A.S. Gandage, V.R. Vinayaka Rao, M.V.N. Sivakumar, A. Vasan, M. Venu, A.B. Yaswanth, Effect of perlite on thermal conductivity of self compacting concrete. Procedia Soc. Behav. Sci. 104,188–197 (2013). https://doi.org/10.1016/j.sbspro.2013.11.111

    Article  Google Scholar 

  33. V. Bindiganavile, F. Batool, N. Suresh, Effect of fly ash on thermal properties of cement based foams evaluated by transient plane heat source. Indian Concr. J. 86(11), 7–14 (2011)

    Google Scholar 

  34. J.W. Gong, G.J. Cao, G.X. Chen, S.X. Li, Relationship between thermal conductivity of concrete and its saturation and temperature (in Chinese). Water Resour. Power. 35(12), 112–115+111 (2017)

    Google Scholar 

  35. J. Jiang, Y. Yuan, Q. Zeng, T. Mo, Relationship of moisture content with temperature and relative humidity in concrete. Mag. Concr. Res. 65(11), 685–692 (2013). https://doi.org/10.1680/macr.13.00211

    Article  Google Scholar 

  36. Q. Yang, Inner relative humidity and degree of saturation in high-performance concrete stored in water or salt solution for 2 years. Cement Concr. Res. 29(1), 45–53 (1999). https://doi.org/10.1016/S0008-8846(98)00174-4

    Article  Google Scholar 

  37. W. Zhang, H. Wang, X. Gu, Effects of randomly distributed aggregates on thermal properties of concrete (in Chinese). J. Build. Mater. (Jianzhu Cailiao Xuebao) 20(2), 168–73 and 197 (2017)

  38. S.Y. Chung, T.S. Han, S.Y. Kim, J.H.J. Kim, K.S. Youm, J.H. Lim, Evaluation of effect of glass beads on thermal conductivity of insulating concrete using micro CT images and probability functions. Cem. Concr. Composites. 65, 150–162 (2016). https://doi.org/10.1016/j.cemconcomp.2015.10.011

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by National Key R&D Program of China (2017YFC1501100), the National Natural Science Foundation of China (Grant Nos. 51279090, 51879145 and 51939004), and the Hubei Key Laboratory of Construction and Management in Hydropower Engineering (2020KSD11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Tong, F., Liu, G. et al. Model for Predicting the Thermal Conductivity of Concrete. Int J Thermophys 42, 34 (2021). https://doi.org/10.1007/s10765-020-02786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02786-6

Keywords

Navigation