Skip to main content
Log in

Temperature-Dependent Emissivity Models of Aeronautical Alloy DD6 and Modified Function for Emissivity Computation with Different Roughness

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, the spectral emissivity of aeronautical alloy DD6 at eight temperatures (473 K, 523 K, 573 K, 623 K, 673 K, 723 K, 773 K and 823 K) over the spectral range from  3 μm to 20 μm is systematically studied under argon condition. The multi-temperature calibration method is adopted to accurately obtain the FTIR spectrometer response, and then the improved method that eliminates the disturbances caused by background radiation is used for spectral emissivity determination. The effects of temperature, wavelength and surface roughness on the spectral emissivity of DD6 are investigated. The results show that the spectral emissivity increases with increasing temperature and decreases with increasing wavelength, and the emissivity increases with increasing surface roughness. The fitting relationship between the spectral emissivity and temperature is established, and it is found that the fitting results of the complex model are more consistent than those of other models. To verify the validity of the complex model, the temperature inferred from the model is compared with that measured by the radiometer and thermocouple directly. The modified emissivity model based on the Agababov roughness function is established to infer the spectral emissivity of samples with different surface roughness. The relative combined uncertainty of spectral emissivity is evaluated to be better than 3.2% except for the atmospheric absorption bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Huang, C. Zhao, N. Li, Microstructure evolution of DD6 during different heat treatment conditions. Mater. Res. Expr. 7, 016503 (2020)

    Article  ADS  Google Scholar 

  2. T. Iuchi, T. Seo, Radiation thermometry of silicon wafers based on emissivity-invariant condition. Appl. Opt. 50, 323–328 (2011)

    Article  ADS  Google Scholar 

  3. C.D. Wen, Investigation of steel emissivity behaviors: Examination of Multispectral Radiation Thermometry (MRT) emissivity models. Int. J. Heat Mass Transf. 53, 2035–2043 (2010)

    Article  Google Scholar 

  4. C.D. Wen, Study of steel emissivity characteristics and application of multispectral radiation thermometry (MRT). J. Mater. Eng. Perform. 20, 289–297 (2011)

    Article  Google Scholar 

  5. P. Hagqvist, F. Sikström, A.K. Christiansson, Emissivity estimation for high temperature radiation pyrometry on Ti-6Al-4V. Measurement 46, 871–880 (2013)

    Article  ADS  Google Scholar 

  6. C.D. Wen, I. Mudawar, Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. Int. J. Heat Mass Transf. 48, 1316–1329 (2005)

    Article  Google Scholar 

  7. G. Teodorescu, P.D. Jones, R.A. Overfelt, B. Guo, Normal emissivity of high-purity nickel at temperatures between 1440 and 1605 K. J. Phys. Chem. Solids 69, 133–138 (2008)

    Article  ADS  Google Scholar 

  8. I. Setién-Fernández, T. Echániz, L. González-Fernández, R.B. Pérez-Sáez, M.J. Tello, Spectral emissivity of copper and nickel in the mid-infrared range between 250 and 900 °C. Int. J. Heat Mass Transf. 71, 549–554 (2014)

    Article  Google Scholar 

  9. I. González de Arrieta, T. Echániz, J.M. Olmos, R. Fuente, I. Urcelay-Olabarría, J.M. Igartua, M.J. Tello, G.A. López, Evolution of the infrared emissivity of Ni during thermal oxidation until oxide layer opacity. Infrared Phys. Technol. 97, 270–276 (2019)

    Article  ADS  Google Scholar 

  10. K. Yu, H. Zhang, Y. Liu, Y. Liu, Study of normal spectral emissivity of copper during thermal oxidation at different temperatures and heating times. Int. J. Heat Mass Transf. 129, 1066–1074 (2019)

    Article  Google Scholar 

  11. M. Kobayashi, A. Ono, M. Otsuki, H. Sakate, F. Sakuma, A Database of normal spectral emissivities of metals at high temperatures. Int. J. Thermophys. 20, 299–308 (1999)

    Article  Google Scholar 

  12. M. Kobayashi, M. Otsuki, H. Sakate, F. Sakuma, A. Ono, System for measuring the spectral distribution of normal emissivity of metals with direct current heating. Int. J. Thermophys. 20, 289–298 (1999)

    Article  Google Scholar 

  13. K.C. Mills, Y.M. Youssef, Z.S. Li, Y.C. Su, Calculation of thermophysical properties of Ni-based superalloys. ISIJ Int. 46, 623–632 (2006)

    Article  Google Scholar 

  14. L.D. Campo, R.B. Pérez-Sáez, X. Esquisabel, I. Fernandez, M.J. Tello, New experimental device for infrared spectral directional emissivity measurements in a controlled environment. Rev. Sci. Instrum. 77, 113111 (2006)

    Article  ADS  Google Scholar 

  15. L.D. Campo, R.B. Pérez-Sáez, L. González-Fernández, X. Esquisabel, I. Fernández, P. González-Martín, M.J. Tello, Emissivity measurements on aeronautical alloys. J. Alloy. Compd. 489, 482–487 (2010)

    Article  Google Scholar 

  16. C. Cagran, H. Reschab, R. Tanzer, W. Schützenhöfer, A. Graf, G. Pottlacher, Normal spectral emissivity of the industrially used alloys NiCr20TiAl, Inconel 718, X2CrNiMo18-14-3, and another austenitic steel at 684.5 nm. Int. J. Thermophys. 30, 1300–1309 (2009)

    Article  Google Scholar 

  17. L. González-Fernández, L.D. Campo, R.B. Pérez-Sáez, M.J. Tello, Normal spectral emittance of Inconel 718 aeronautical alloy coated with yttria stabilized zirconia films. J. Alloy. Compd. 513, 101–106 (2012)

    Article  Google Scholar 

  18. M. Watanabe, M. Adachi, H. Fukuyama, Normal spectral emissivity and heat capacity at constant pressure of Fe-Ni melts. J. Mater. Sci. 52, 9850–9858 (2017)

    Article  ADS  Google Scholar 

  19. S. Zhao, X. Li, X. Zhou, K. Cheng, X. Huai, Investigation of the effects of Ni-based alloy DZ125 on the normal spectral emissivity during oxidation. Appl. Therm. Eng. 109, 663–671 (2016)

    Article  Google Scholar 

  20. S. Zhao, X. Li, X. Zhou, K. Cheng, X. Huai, Investigation of the effects of Ni-based alloy K465 on the normal spectral emissivity during oxidation. Infrar. Phys. Technol. 78, 214–222 (2016)

    Article  ADS  Google Scholar 

  21. S. Zhao, X. Li, X. Huai, X. Zhou, K. Cheng, The normal spectral emission characteristics of Ni-based alloys during oxidation at high temperatures. Int. J. Heat Mass Transf. 128, 378–391 (2019)

    Article  Google Scholar 

  22. B. Kong, T. Li, Q. Eri, Normal spectral emissivity measurement on five aeronautical alloys. J. Alloy. Compd. 703, 125–138 (2017)

    Article  Google Scholar 

  23. B. Kong, T. Li, Q. Eri, Normal spectral emissivity of GH536 (HastelloyX) in three surface conditions. Appl. Therm. Eng. 113, 20–26 (2017)

    Article  Google Scholar 

  24. R.B. Pérez-Sáez, L.D. Campo, M.J. Tello, Analysis of the accuracy of methods for the direct measurement of emissivity. Int. J. Thermophys. 29, 1141–1155 (2008)

    Article  ADS  Google Scholar 

  25. K. Zhang, K. Yu, Y. Liu, Y. Zhao, An improved algorithm for spectral emissivity measurements at low temperatures based on the multi-temperature calibration method. Int. J. Heat Mass Transf. 114, 1037–1044 (2017)

    Article  Google Scholar 

  26. K. Zhang, Y. Zhao, K. Yu, Y. Liu, Development of experimental apparatus for precise emissivity determination based on the improved method compensating disturbances by background radiation. Infrared Phys. Technol. 92, 350–357 (2018)

    Article  ADS  Google Scholar 

  27. T. Echániz, R.B. Pérez-Sáez, M.J. Tello, IR radiometer sensitivity and accuracy improvement by eliminating spurious radiation for emissivity measurements on highly specular samples in the 2–25 μm spectral range. Measurement 110, 22–26 (2017)

    Article  ADS  Google Scholar 

  28. M.C. Constancio Jr, R.X. Adhikari, O.D. Aguiar, K. Arai, C.C. Wipf, Silicon emissivity as a function of temperature. Int. J. Heat Mass Transf. 157, 119863 (2020)

    Article  Google Scholar 

  29. Y. Zhang, F. Ji, Y. Zhang, S. Shu, R. Lu, Research on the normal spectral band emissivity of tungsten between 150 and 500 °C. Rev. Sci. Instrum. 89, 10J126 (2018)

    Article  Google Scholar 

  30. Y. Zhang, Y. Zhang, R. Lu, S. Shu, X. Lang, L. Yang, Investigation of the normal spectral band emissivity characteristic within 7.5 to 13 μm for Molybdenum between 100 and 500 °C. Infrared Phys. Technol. 88, 74–80 (2018)

    Article  ADS  Google Scholar 

  31. D. Shi, Q. Liu, Z. Zhu, Y. Pan, J. Sun, Study on relationships between the spectral emissivity of DC01 steel and temperature in an oxidizing environment. Int. J. Thermophys. 35, 1545–1556 (2014)

    Article  ADS  Google Scholar 

  32. K. Yu, F. Zhang, D. Liu, Y. Liu, Spectral emissivity of type E235B low carbon structural steel with different roughnesses. Opt. Rev. 24, 540–548 (2017)

    Article  Google Scholar 

  33. J.A. Berger, S.L. Cady, V.E. Hamilton, Effects of micrometer-scale surface roughness on thermal infrared emittance spectra of silica glass. Icarus 350, 113868 (2020)

    Article  Google Scholar 

  34. C.D. Wen, I. Mudawar, Modeling the effects of surface roughness on the emissivity of aluminum alloys. Int. J. Heat Mass Transf. 49, 4279–4289 (2006)

    Article  Google Scholar 

  35. S.G. Agababov, Effect of the roughness factor on radiation properties of solids (experimental check). Teplofizika Vysokikh Temp. 8, 3 (1970)

    Google Scholar 

  36. S.G. Agababov, Effect of the roughness of the surface of a solid body on its radiation properties and methods for their experimental determination. Teplofizika Vysokikh Temp. 6, 78–87 (1968)

    Google Scholar 

  37. K. Yu, Y. Liu, D. Liu, Y. Liu, Normal spectral emissivity characteristics of roughened cobalt and improved emissivity model based on Agababov roughness function. Appl. Therm. Eng. 159, 113957 (2019)

    Article  Google Scholar 

  38. P. Honnerová, J. Martan, M. Kučera, M. Honner, New experimental device for high-temperature normal spectral emissivity measurements of coatings. Meas. Sci. Technol. 25, 30–37 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61627818, U1804261, 61675065 and 61905068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaihua Zhang or Yufang Liu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, K., Yu, K. et al. Temperature-Dependent Emissivity Models of Aeronautical Alloy DD6 and Modified Function for Emissivity Computation with Different Roughness. Int J Thermophys 42, 7 (2021). https://doi.org/10.1007/s10765-020-02754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02754-0

Keywords

Navigation