Skip to main content
Log in

Thermophysical Properties Investigation of High-Density Jet Fuel with Alcohols Additives

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The densities and dynamic viscosities of three binary liquid mixtures of tricyclo [5.2.1.02,6] deca-3,8-diene(endo-DCPD) with ethanol, 2-propanol and 1-pentanol at different temperatures (293.15, 303.15 and 313.15) K and atmospheric pressure were measured over the entire compositional range. The excess molar volume, viscosity deviation and excess Gibbs energy for activation of the viscous flow of mixtures were calculated and adjusted by the Redlich–Kister equation. The excess molar volume data were correlated using Prigogine–Flory–Patterson (PFP) theory. Five typical semi-empirical correlations with one and two interaction parameters and predictive models UNIFAC Dortmund_VISCO (Universal Functional Activity Coefficients modified by Dortmund-Viscosity) and ASOG_VISCO (Analytical Solution Group-Viscosity) with newly estimated interaction parameters were used to correlate viscosity. In addition, excess Gibbs free energy results were estimated using local composition concept and group contribution models. All of these results provide important information on the research and application of high-density jet fuel with green fuel as additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A. Touazi, E. Khellili, S. Didaoui et al., Measurement and correlation of isobaric densities and viscosities for endo-dicyclopentadiene with hydrocarbons (C6–C8) at different temperatures. J. Therm. Anal. Calorim. 134, 1223–1242 (2018). https://doi.org/10.1007/s10973-018-7583-2

    Article  Google Scholar 

  2. A.A. Touazi, S. Didaoui, K. Khimeche et al., Measurement and prediction of thermophysical properties of binary mixtures of dicyclopentadiene with methylcyclohexane, toluene, and p-xylene. Thermochim. Acta 685, 178536 (2020). https://doi.org/10.1016/j.tca.2020.178536

    Article  Google Scholar 

  3. W. Wang, Y. Cong, S. Chen et al., One-pot catalytic transformation of dicyclopentadiene to high energy density fuel exo-tetrahydrotricyclopentadiene. Top. Catal. 58, 350–358 (2015). https://doi.org/10.1007/s11244-015-0376-y

    Article  Google Scholar 

  4. H. Chung, C. Chen, R. Kremer et al., Recent developments in high-energy density liquid hydrocarbon fuels. Energy Fuels 13, 641–649 (1999). https://doi.org/10.1021/ef980195k

    Article  Google Scholar 

  5. Y. Batonneau, R. Brahmi, B. Cartoixa et al., Green propulsion: catalysts for the european FP7 project GRASP. Top. Catal. 57, 656–667 (2014). https://doi.org/10.1007/s11244-013-0223-y

    Article  Google Scholar 

  6. A. Narayan, B. Wang, I.B.N. Medina et al., Prediction of heat of formation for exo-Dicyclopentadiene. J. Loss Prev. Process Ind. 44, 433–439 (2016). https://doi.org/10.1016/j.jlp.2016.10.015

    Article  Google Scholar 

  7. E.W. de Menezes, R. da Silva, R. Cataluna et al., Effect of ethers and ether/ethanol additives on the physicochemical properties of diesel fuel and on engine tests. Fuel 85, 815–822 (2006). https://doi.org/10.1016/j.fuel.2005.08.027

    Article  Google Scholar 

  8. D. Li, X. Qin, W. Fang et al., Densities, viscosities and refractive indices of binary liquid mixtures of methyl tert-butyl ether or ethyl tert-butyl ether with a hydrocarbon fuel. Exp. Thermal Fluid Sci. 48, 163–168 (2013). https://doi.org/10.1016/j.expthermflusci.2013.02.019

    Article  Google Scholar 

  9. H.A. Bruson, T.W. Riener, The chemistry of dicyclopentadiene. III. Addition of alcohols and phenols. J. Am. Chem. Soc. 68, 8–10 (1946). https://doi.org/10.1002/aic.690140124

    Article  Google Scholar 

  10. H. Renon, C. Eckert, J. Prausnitz, Molecular thermodynamics of simple liquids. pure components. Ind. Eng. Chem. Fundam. 6, 52–58 (1967)

    Article  Google Scholar 

  11. H.C. Van Ness, J. Van Winkle, H.H. Richtol et al., Infrared spectra and the thermodynamics of alcohol-hydrocarbon systems. J. Phys. Chem. 71, 1483–1494 (1967). https://doi.org/10.1021/j100864a046

    Article  Google Scholar 

  12. C. Savini, D. Winterhalter, H. Van Ness, Heats of mixing of some alcohol-hydrocarbon systems. J. Chem. Eng. Data 10, 168–171 (1965). https://doi.org/10.1021/je60025a031

    Article  Google Scholar 

  13. R. Stokes, C. Burfitt, Enthalpies of dilution and transfer of ethanol in non-polar solvents. J. Chem. Thermodyn. 5(5), 623–631 (1973). https://doi.org/10.1016/S0021-9614(73)80003-5

    Article  Google Scholar 

  14. K. Marsh, C. Burfitt, Excess volumes for alcohols + non-polar solvents I. Ethanol + cyclohexane, + n-hexane, + benzene, + carbon tetrachloride, + cyclopentane, and + p-xylene. J. Chem. Thermodyn. 7, 955–968 (1975). https://doi.org/10.1016/0021-9614(75)90159-7

    Article  Google Scholar 

  15. A.N. Fletcher, C.A. Heller, Self-association of alcohols in nonpolar solvents. J. Phys. Chem. 71, 3742–3756 (1967). https://doi.org/10.1021/j100871a005

    Article  Google Scholar 

  16. L. Mohammadi, A. Omrani, Density, refractive index, and excess properties of sulfolane and alkanediols binary mixtures at different temperatures. J. Therm. Anal. Calorim. 131, 1527–1543 (2018). https://doi.org/10.1007/s10973-017-6702-9

    Article  Google Scholar 

  17. G.V. Olivieri, C.S. da Cunha, Martins L. dos Santos et al., Thermodynamic and spectroscopic study of binary mixtures of n-butylammonium oleate ionic liquid + alcohol at T = 288.15–308.15 K. J. Therm. Anal. Calorim. 131(3), 2925–2942 (2018). https://doi.org/10.1007/s10973-017-6801-7

    Article  Google Scholar 

  18. B. Mukesh, M. Gowrisankar, T.S. Krishna et al., Studies on the importance of thermodynamic and transport properties of liquid mixtures at various temperatures. J. Therm. Anal. Calorim. 132, 1167–1181 (2018). https://doi.org/10.1007/s10973-018-6972-x

    Article  Google Scholar 

  19. P. Vasundhara, M. Raveendra, C. Narasimharao et al., Effect of Arrhenius energy factor on molecular interactions of binary liquid mixtures. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7261-4

    Article  Google Scholar 

  20. D. Patterson, G. Delmas, Corresponding states theories and liquid models. Discuss. Faraday Soc. 49, 98–105 (1970). https://doi.org/10.1039/DF9704900098

    Article  Google Scholar 

  21. P. Katti, M. Chaudhri, Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964). https://doi.org/10.1021/je60022a047

    Article  Google Scholar 

  22. L. Grunberg, A.H. Nissan, Mixture law for viscosity. Nature 164(4175), 799–800 (1949). https://doi.org/10.1038/164799b0

    Article  ADS  Google Scholar 

  23. I. Wei, R. Rowley, A local composition model for multicomponent liquid mixture shear viscosity. Chem. Eng. Sci. 40, 401–408 (1985). https://doi.org/10.1016/0009-2509(85)85102-2

    Article  Google Scholar 

  24. R.J. Martins, M.J.M. Cardoso, O.E. Barcia, Excess Gibbs free energy model for calculating the viscosity of binary liquid mixtures. Ind. Eng. Chem. Res. 39(3), 849–854 (2000). https://doi.org/10.1021/ie990398b

    Article  Google Scholar 

  25. Y.-C. He, X.-J. Xu, L.-J. Yang et al., Viscosity modeling for ionic liquid solutions by Eyring-Wilson equation. Chem. Ind. Chem. Eng. Quar. 18, 441–447 (2012). https://doi.org/10.2298/CICEQ110829019H

    Article  Google Scholar 

  26. B. González, Á. Domínguez, J. Tojo, Viscosities, densities, and speed of sound of the cycloalkanes with secondary alcohols at T = (293.15, 298.15, and 303.15) K: new UNIFAC − VISCO interaction parameters. J. Chem. Eng. Data 51(3), 1076–1087 (2006). https://doi.org/10.1021/je050540h

    Article  Google Scholar 

  27. K. Tochigi, K. Yoshino, V. Rattan, Prediction of kinematic viscosities for binary and ternary liquid mixtures with an ASOG-VISCO group contribution method. Int. J. Thermophys. 26, 413–419 (2005). https://doi.org/10.1007/s10765-005-4505-x

    Article  ADS  Google Scholar 

  28. H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968). https://doi.org/10.1002/aic.690140124

    Article  Google Scholar 

  29. D.S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21(1), 116–128 (1975). https://doi.org/10.1002/aic.690210115

    Article  Google Scholar 

  30. J. Heil, J. Prausnitz, Phase equilibria in polymer solutions. AIChE J. 12, 678–685 (1966). https://doi.org/10.1002/aic.690120412

    Article  Google Scholar 

  31. J. Gmehling, J. Lohmann, A. Jakob et al., A modified UNIFAC (Dortmund) model. 3. Revision and extension. Ind. Eng. Chem. Res. 37, 4876–4882 (1998). https://doi.org/10.1021/ie980347z

    Article  Google Scholar 

  32. I.G. Yakovlev, I.K. Garkushin, A.V. Kolyado, Physical properties of the eutectic composition of diphenyl-n-tridecane. J. Therm. Anal. Calorim. 131, 455–461 (2018). https://doi.org/10.1007/s10973-017-6846-7

    Article  Google Scholar 

  33. C.M. McDonald, C.A. Floudas, Global optimization and analysis for the Gibbs free energy function using the UNIFAC, Wilson, and ASOG equations. Ind. Eng. Chem. Res. 34, 1674–1687 (1995). https://doi.org/10.1021/ie00044a020

    Article  Google Scholar 

  34. K. Tochigi, D. Tiegs, J. Gmehling et al., Determination of new ASOG parameters. J. Chem. Eng. Jpn. 23, 453–463 (1990). https://doi.org/10.1252/jcej.23.453

    Article  Google Scholar 

  35. A. Ćwiklińska, C.M. Kinart, Thermodynamic and physicochemical properties of binary mixtures of nitromethane with 2-methoxyethanol + 2-butoxyethanol systems at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. J. Chem. Thermodyn. 43, 420–429 (2011). https://doi.org/10.1016/j.jct.2010.10.016

    Article  Google Scholar 

  36. M. Kondaiah, K. Sreekanth, D.S. Kumar et al., Densities, viscosities, and excess properties for binary mixtures of ethylene glycol with amides at 308.15 K. J. Therm. Anal. Calorim. 118, 475–483 (2014). https://doi.org/10.1007/s10973-014-4019-5

    Article  Google Scholar 

  37. R. Fort, W. Moore, Viscosities of binary liquid mixtures. Trans. Faraday Soc. 62, 1112–1119 (1966). https://doi.org/10.1039/TF9666201112

    Article  Google Scholar 

  38. O. Redlich, A. Kister, Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  39. http://www.shell.com/business-customers/chemicals/safe-product-handling-and-transportation/marine-cargo-chemicals-handling.html. Accessed 19 May 2017

  40. G. Sivaramprasad, M.V. Rao, D. Prasad, Density and viscosity of ethanol + 1, 2-dichloroethane, ethanol + 1, 1, 1-trichloroethane, and ethanol + 1, 1, 2, 2-tetrachloroethane binary mixtures. J. Chem. Eng. Data 35, 122–124 (1990). https://doi.org/10.1021/je00060a006

    Article  Google Scholar 

  41. M. Zaoui-Djelloul-Daouadji, I. Mokbel, I. Bahadur et al., Vapor-liquid equilibria, density and sound velocity measurements of (water or methanol or ethanol + 1, 3-propanediol) binary systems at different temperatures. Thermochim. Acta 642, 111–123 (2016). https://doi.org/10.1016/j.tca.2016.09.005

    Article  Google Scholar 

  42. H.-C. Ku, C.-H. Tu, Density and viscosity of binary mixtures of propan-2-ol, 1-chlorobutane, and acetonitrile. J. Chem. Eng. Data 43, 465–468 (1998). https://doi.org/10.1021/je9702403

    Article  Google Scholar 

  43. S. Mrad, C. Lafuente, B. Giner et al., Thermophysical study of the binary mixtures of N, N-dimethylacetamide with 2-propanol and 2-butanol. Thermochim. Acta 655, 169–175 (2017). https://doi.org/10.1016/j.tca.2017.06.023

    Article  Google Scholar 

  44. A.S. Al-Jimaz, J.A. Al-Kandary, A.H.-M. Abdul-Latif, Densities and viscosities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures. Fluid Phase Equilib. 218, 247–260 (2004). https://doi.org/10.1016/j.fluid.2003.12.007

    Article  Google Scholar 

  45. S. Karlapudi, R. Gardas, K. Sivakumar, FT-IR studies on excess thermodynamic properties of binary liquid mixtures o-chlorotoluene with 1-propanol, 1-butanol, 1-pentanol, 1-hexanol and 1-heptanol at different temperatures. J. Chem. Thermodyn. 67, 203–209 (2013). https://doi.org/10.1016/j.jct.2013.08.013

    Article  Google Scholar 

  46. W.-L. Weng, Viscosities and densities for binary mixtures of anisole with 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol. J. Chem. Eng. Data 44, 63–66 (1999). https://doi.org/10.1021/je980104d

    Article  Google Scholar 

  47. M.D. Pena, G. Tardajos, Isothermal compressibilities of n-1-alcohols from methanol to 1-dodecanol at 298.15, 308.15, 318.15, and 333.15 K. J. Chem. Thermodyn. 11, 441–445 (1979). https://doi.org/10.1016/0021-9614(79)90121-6

    Article  Google Scholar 

  48. K. Singh, K. Kalra, S. Maken et al., Excess enthalpies and volumes of mixing of 1-propanol or 2-propanol + cyclohexane at 298.15 and 308.15 K. Fluid Phase Equilib. 123, 271–281 (1996). https://doi.org/10.1016/S0378-3812(96)90037-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Amin Touazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touazi, A.A., Didaoui, S., Khimeche, K. et al. Thermophysical Properties Investigation of High-Density Jet Fuel with Alcohols Additives. Int J Thermophys 41, 130 (2020). https://doi.org/10.1007/s10765-020-02713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02713-9

Keywords

Navigation