Skip to main content
Log in

Research on Modulated Thermal Wave Radar Imaging Technique for Photothermal Properties of Semi-transparent Materials

  • ATPC 2019
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The photothermal characteristics of semi-transparent medium are the basis for describing the transmission process of photothermal radiation. Therefore, the related measurement researches have important application value for the non-destructive testing of high-tech module. In the present work, an infrared thermal wave radar imaging (TWRI) technique combined with sequential quadratic programming (SQP) algorithm was proposed for simultaneous reconstruction of the photothermal property distributions in 2D semi-transparent materials containing defects. The Fourier transform, Hilbert transform, and the Chirp lock-in correlation algorithm were applied and the results of the amplitude and phase information of the temperature signals were compared, so as to identify the position of internal defects, which reduced the number of parameters needed to reconstruct. Then, the SQP algorithm was introduced to simultaneously reconstruct the absorption coefficient and thermal conductivity coefficient distributions in the medium. The TWRI-SQP technique absorbs the advantages of fast identification of defects by TWRI technique and the accurate reconstruction of the photothermal properties of the semi-transparent materials by SQP algorithm. The number of internal defects, geometric dimensioning, shape, and photothermal properties can be reconstructed accurately. The results show that this method is practical and robust to detect the photothermal properties of 2D semi-transparent materials with defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Amplitude of temperature signal, K

B k :

Approximation of Hession matrix

c p :

Specific heat capacity at constant pressure, J·(kg·K)−1

D 0 :

Reference in-phase function

D -90 :

Reference orthogonal function

E :

Reconstruction value

f 0 :

Initial frequency, Hz

f 1 :

End frequency, Hz

f :

Sampling frequency, Hz

F :

Objective function

g :

Gradient matrix of the objective function

h w :

Convective heat transfer coefficient, W·m−2·K−1

I :

Radiative intensity, W·m−2·sr−1

L :

Lagrangian function or size of medium, m

k :

Sampling time, s

M :

Measurement value

M s :

Modulation period

n :

Outward normal vector

N k :

The number of sampling points

N s :

The number of modulation periods

q :

Heat flux, W·m−2

r :

Penalty factor

s :

Spacial position

s :

Transmission direction

S 0 :

In-phase reference output

S -90 :

Orthogonal reference output

T :

Temperature, K

β e :

Extinction coefficient, m−1

β i :

Lagrangian multiplier

γ :

Reflectivity

ε :

Emissivity

κ a :

Absorption coefficient, m−1

κ s :

Scattering coefficient, m−1

λ :

Thermal conductivity, W·(m·K)−1

ρ :

Density, kg·m−3

σ :

Stefan–Boltzmann constant, W·(m−2·K−4)

τ :

Transmissivity

φ :

Phase angle of temperature signal

Φ:

Scattering phase function

a:

Amplitude

c:

Conduction heat transfer

e :

Ambient

r:

Radiative heat transfer

w :

Boundary value

exa:

Exact value

mea:

Measurement value

recon:

Reconstructed value

i :

ith value

s :

Sampling value

References

  1. D.E. Myers, C.J. Martin, M.L. Blosser, Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems, in NASA Langley technical report server, (2000)

  2. W. Mandler, T.M. Yonushonis, Commercial applications for advanced ceramics in diesel engines, in Ceramic engineering and science proceedings, (2009), pp. 3–10

  3. S. Johnson, M. Gasch, D. Leiser, D. Stewart, M. Stackpool, J. Thornton, C. Espinoza, Development of new TPS at NASA Ames research center, in 15th AIAA international space planes and hypersonic systems and technologies conference, (2008), p. 2560

  4. D. Liu, J. Yan, F. Wang, Q. Huang, Y. Chi, K. Cen, Experimental reconstructions of flame temperature distributions in laboratory-scale and large-scale pulverized-coal fired furnaces by inverse radiation analysis. Fuel 93, 397–403 (2012). https://doi.org/10.1016/j.fuel.2011.09.004

    Article  Google Scholar 

  5. C. Ruan, T. Yu, F.E. Chen, S.X. Wang, W.W. Cai, X.C. Lu, Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence. Energy 170, 744–751 (2019). https://doi.org/10.1016/j.energy.2018.12.215

    Article  Google Scholar 

  6. S.C. Sun, H. Qi, W.W. Zhang, Y.T. Ren, L.M. Ruan, Combined lock-in thermography and SQP algorithm for non-intrusive reconstruction of optical and thermal properties in semitransparent medium. Int. J. Therm. Sci. 132, 446–456 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.06.009

    Article  Google Scholar 

  7. J.L. Gong, J.Y. Liu, L. Qin, Y. Wang, Investigation of carbon fiber reinforced polymer (CFRP) sheet with subsurface defects inspection using thermal-wave radar imaging (TWRI) based on the multi-transform technique. Ndt&E Int. 62, 130–136 (2014). https://doi.org/10.1016/j.ndteint.2013.12.006

    Article  Google Scholar 

  8. L. Chrobak, M. Malinski, On investigations of the optical absorption coefficient of gold and germanium implanted silicon with the use of the non-destructive contactless photo thermal infrared radiometry. J. Electron. Mater. 48, 5273–5278 (2019). https://doi.org/10.1007/s11664-019-07333-0

    Article  ADS  Google Scholar 

  9. C.W. Bu, H.J. Xu, Z.Q. Mao, D. Zhang, C.B. Pu, Non-destructive testing theoretical study on skin tumor detection using long-pulsed infrared thermal wave testing technology. Therm. Sci. 23, 1401–1408 (2019). https://doi.org/10.2298/Tsci180823204b

    Article  Google Scholar 

  10. R. Mulaveesala, V. Arora, A. Rani, Coded thermal wave imaging technique for infrared non-destructive testing and evaluation. Nondestruct. Test. Eval. 34, 243–253 (2019). https://doi.org/10.1080/10589759.2019.1597356

    Article  ADS  Google Scholar 

  11. N. Ludwig, P. Teruzzi, Heat losses and 3D diffusion phenomena for defect sizing procedures in video pulse thermography. Infrared Phys. Technol. 43, 297–301 (2002)

    Article  ADS  Google Scholar 

  12. N. Sharp, P. O’Regan, D. Adams, J. Caruthers, A. David, M. Suchomel, Lithium-ion battery electrode inspection using pulse thermography. Ndt&E Int. 64, 41–51 (2014). https://doi.org/10.1016/j.ndteint.2014.02.006

    Article  Google Scholar 

  13. V. Popow, M. Gurka, Determination of depth and size of defects in carbon-fiber-reinforced plastic with different methods of pulse thermography, in Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation Xii, vol. 10599 (2018).https://doi.org/10.1117/12.2296564

  14. G. Busse, D. Wu, W. Karpen, Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71, 3962–3965 (1992). https://doi.org/10.1063/1.351366

    Article  ADS  Google Scholar 

  15. D. Palumbo, R. Tamborrino, U. Galietti, P. Aversa, A. Tati, V.A.M. Luprano, Ultrasonic analysis and lock-in thermography for debonding evaluation of composite adhesive joints. Ndt&E Int. 78, 1–9 (2016). https://doi.org/10.1016/j.ndteint.2015.09.001

    Article  Google Scholar 

  16. O. Breitenstein, W. Warta, M. Langenkamp, Lock-in thermography: basics and use for evaluating electronic devices and materials (Springer, Berlin, 2010)

    Book  Google Scholar 

  17. A. Mandelis, L.L.M. Borm, Frequency modulated (Fm) time-delay photoacoustic and photothermal wave spectroscopies—technique, instrumentation, and detection.3. Mirage effect spectrometer, dynamic-range, and comparison to pseudo-random-binary-sequence (Prbs) method. Rev. Sci. Instrum. 57, 630–635 (1986). https://doi.org/10.1063/1.1138881

    Article  ADS  Google Scholar 

  18. R. Mulaveesala, S. Tuli, Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2382738

    Article  Google Scholar 

  19. R.Z. Yang, Y.Z. He, A. Mandelis, N.C. Wang, X. Wu, S.D. Huang, Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites. IEEE Trans. Ind. Inform. 14, 5637–5647 (2018). https://doi.org/10.1109/Tii.2018.2834462

    Article  Google Scholar 

  20. T.Y. Kim, S.W. Baek, Analysis of combined conductive and radiative heat-transfer in a 2-dimensional rectangular enclosure using the discrete ordinates method. Int. J. Heat Mass Transf. 34, 2265–2273 (1991). https://doi.org/10.1016/0017-9310(91)90052-g

    Article  ADS  Google Scholar 

  21. J.F. Luo, X.L. Xia, H.P. Tan, T.W. Tong, Transient coupled heat transfer in three-layer composite with opaque specular surfaces. J. Thermophys. Heat Transf. 16, 297–305 (2002). https://doi.org/10.2514/2.6700

    Article  Google Scholar 

  22. S.C. Mishra, T.B.P. Kumar, B. Mondal, Lattice Boltzmann method applied to the solution of energy equation of a radiation and non-Fourier heat conduction problem. Numer. Heat. Transf. A Appl. 54, 798–818 (2008). https://doi.org/10.1080/10407780802424155

    Article  ADS  Google Scholar 

  23. Y. Zhang, H.L. Yi, H.P. Tan, Natural element method analysis for coupled radiative and conductive heat transfer in semitransparent medium with irregular geometries. Int. J. Therm. Sci. 76, 30–42 (2014). https://doi.org/10.1016/j.ijthermalsci.2013.08.013

    Article  Google Scholar 

  24. L. Liu, H. Tan, Q. Yu, Inverse radiation problem of boundary incident radiation heat flux in semitransparent planar slab with semitransparent boundaries. J. Therm. Sci. 7, 131–138 (1998). https://doi.org/10.1007/s11630-998-0009-x

    Article  ADS  Google Scholar 

  25. N. Daouas, A. Fguiri, M.S. Radhouani, Solution of a coupled inverse heat conduction-radiation problem for the study of radiation effects on the transient hot wire measurements. Exp. Therm. Fluid Sci. 32, 1766–1778 (2008). https://doi.org/10.1016/j.expthermflusci.2008.04.003

    Article  Google Scholar 

  26. H. Qi, C.Y. Niu, S. Gong, Y.T. Ren, L.M. Ruan, Application of the hybrid particle swarm optimization algorithms for simultaneous estimation of multi-parameters in a transient conduction–radiation problem. Int. J. Heat. Mass Transf. 83, 428–440 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.022

    Article  Google Scholar 

  27. Y.T. Ren, H. Qi, F.Z. Zhao, L.M. Ruan, H.P. Tan, Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media. Sci Rep-Uk 6, ARTN 21998 (2016). https://doi.org/10.1038/srep21998

    Article  ADS  Google Scholar 

  28. S.C. Sun, H. Qi, Y.T. Ren, X.Y. Yu, L.M. Ruan, Improved social spider optimization algorithms for solving inverse radiation and coupled radiation–conduction heat transfer problems. Int. Commun. Heat Mass 87, 132–146 (2017). https://doi.org/10.1016/j.icheatmasstransfer.2017.07.010

    Article  Google Scholar 

  29. M.F. Modest, Radiative heat transfer, 3rd edn. (Academic Press, New York, 2013)

    Google Scholar 

  30. H.P. Tan, L.M. Ruan, T.W. Tong, Temperature response in absorbing, isotropic scattering medium caused by laser pulse. Int. J. Heat Mass Transf. 43, 311–320 (2000). https://doi.org/10.1016/S0017-9310(99)00131-3

    Article  MATH  Google Scholar 

  31. R.B. Wilson, A simplicial algorithm for concave programming, in (Harward University, Boston, 1963)

    Google Scholar 

  32. S.-P. Han, A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22, 297–309 (1977). https://doi.org/10.1007/BF00932858

    Article  MathSciNet  MATH  Google Scholar 

  33. P.T. Boggs, J.W. Tolle, Sequential quadratic programming. Acta Numer. 4, 1–51 (1995). https://doi.org/10.1017/S0962492900002518

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. P.E. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005). https://doi.org/10.2307/20453604

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The supports of this work by the National Natural Science Foundation of China (Nos. 51976044, 51806047), and National Science and Technology Major Project (2017-V-0016-0069) are gratefully acknowledged. A very special acknowledgment is also made to the editors and referees who make important comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 12th Asian Thermophysical Properties Conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JQ., Qi, H., Liu, SB. et al. Research on Modulated Thermal Wave Radar Imaging Technique for Photothermal Properties of Semi-transparent Materials. Int J Thermophys 41, 63 (2020). https://doi.org/10.1007/s10765-020-02645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02645-4

Keywords

Navigation