Skip to main content
Log in

Influence of Scattering Phase Function on Estimated Thermal Properties of Al2O3 Ceramic Foams

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Open ceramic foams are usually constituted of three-dimensional networks with randomly interconnected solid struts and fluid within pores. The heat transport within this material can be understood as the coupling of conduction, convection as well as radiation. The cooperative control of different heat transfer mechanisms is critical to successful design and optimization of components working at high temperatures. An answer to this problem usually requires good knowledge and understanding of the corresponding thermal properties in a wide range of temperatures. In the present paper, an inverse identification method was developed to determine coupled thermal properties from transient thermal measurements at temperatures up to 900 K for full description of conduction/radiation heat transports of foam media with absorbing, emitting, and anisotropic scattering effects. The influence of postulated phase function on the identified equivalent extinction coefficient, scattering albedo, anisotropic scattering factor, and two-phase thermal conductivity was discussed for better understanding of thermal behavior within ceramic foams. The estimated thermal properties under each postulated phase function of the sample at transient temperature profiles were used to calculate equivalent thermal conductivities, which were then compared with the measured results at more than 1000 K. The accordance between them indicated that linear anisotropic scattering phase function demonstrates superiority in description of radiation behavior within Al2O3 ceramic foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C :

Specific heat of the sample (J·kg−1·K−1)

g :

Anisotropic scattering factor of phase function

\( \tilde{g} \) :

Equivalent scattering factor of phase function

I :

Total radiation intensity (W·m−2)

I b :

Total blackbody radiation intensity (W·m−2)

krad :

Radiative thermal conductivity (W·m−1·K−1)

L :

Thickness of ceramic foam sample (m)

q c :

Conductive heat flux (W·m−2)

q r :

Radiant heat flux (W·m−2)

t :

Time (s)

T :

Temperature (K)

T 0 :

Initial temperature (K)

T cold :

Cold surface temperature (K)

T hot :

Hot surface temperature (K)

x :

Spatial coordinate through the sample thickness (m)

β :

Extinction coefficient (m−1)

β * :

Weighted extinction coefficient (m−1)

\( \tilde{\beta } \) :

Equivalent extinction coefficient (m−1)

\( \tilde{\varvec{\beta }}^{\varvec{ * }} \) :

Weighted equivalent extinction coefficient (m−1)

ε 1 :

Emissity of the upper bounding surface

ε 2 :

Emissity of the lower bounding surface

θ :

Polar angle rad

Θ:

Scattering angle rad

λ two- phase :

Two-phase thermal conductivity (W·m−1·K−1)

\( \tilde{\lambda }_{{two{ - }phase}} \) :

Equivalent two-phase thermal conductivity (W·m−1·K−1)

μ :

Cosine of the angle between x-axis and direction of radiation propagation

μ′:

Cosine of the angle between x-axis and another direction of radiation

ρ :

Density (kg·m−3)

σ :

Stefan–Boltzmann constant (W·m−2·K−4)

σ a :

Absorption coefficient (m−1)

σ s :

Scattering coefficient (m−1)

\( \sigma_{s}^{*} \) :

Weighted scattering coefficient (m−1)

Φ:

Scattering phase function

\( {\tilde{\varPhi}} \) :

Equivalent scattering phase function

ω :

Scattering albedo

\( \omega^{*} \) :

Weighted scattering albedo

\( \tilde{\omega } \) :

Equivalent scattering albedo

\( \tilde{\varvec{\omega }}^{\varvec{*}} \) :

Weighted equivalent scattering albedo

References

  1. A. Ortona, S. Gianella, D. Gaia, SIC foams for high temperature applications, in Advances in Bioceramics and Porous Ceramics IV: Ceramic Engineering and Science Proceedings (2011), pp. 153–161

  2. W.G. Xu, H.T. Zhang, Z.M. Yang, J.S. Zhang, The effective thermal conductivity of three-dimensional reticulated foam materials. J. Porous Mater. 16, 65–71 (2009)

    Article  Google Scholar 

  3. M. Wang, N. Pan, Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf. 51, 1325–1331 (2008)

    Article  Google Scholar 

  4. M.A. Mendes, S. Ray, D. Trimis, A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures. Int. J. Heat Mass Transf. 66, 412–422 (2013)

    Article  Google Scholar 

  5. M.A. Mendes, S. Ray, D. Trimis, An improved model for the effective thermal conductivity of open-cell porous foams. Int. J. Heat Mass Transf. 75, 224–230 (2014)

    Article  Google Scholar 

  6. M.A. Mendes, S. Ray, D. Trimis, Evaluation of effective thermal conductivity of porous foams in presence of arbitrary working fluid. Int. J. Therm. Sci. 79, 260–265 (2014)

    Article  Google Scholar 

  7. R. Singh, H.S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng. 24, 1841–1849 (2004)

    Article  Google Scholar 

  8. R. Coquard, D. Baillis, Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater. 57, 5466–5479 (2009)

    Article  Google Scholar 

  9. G.N. Dulnev, Heat transfer through solid disperse systems. J. Eng. Phys. Thermophys. 9, 275–279 (1965)

    Article  Google Scholar 

  10. A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)

    Article  Google Scholar 

  11. L.R. Glicksmann, M.A. Schuetz, Low Density Cellular Plastics (Chapman & Hall, London, 1994), pp. 104–152

    Book  Google Scholar 

  12. R. Coquard, D. Rochais, D. Baillis, Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures. Fire Technol. 48, 699–732 (2012)

    Article  Google Scholar 

  13. P. Ranut, On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models. Appl. Therm. Eng. 101, 496–524 (2016)

    Article  Google Scholar 

  14. P. Kumar, F. Topin, J. Vicente, Determination of effective thermal conductivity from geometrical properties: application to open cell foams. Int. J. Therm. Sci. 81, 13–28 (2014)

    Article  Google Scholar 

  15. P. Kumar, F. Topin, Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams. Appl. Therm. Eng. 71, 536–547 (2014)

    Article  Google Scholar 

  16. B. Dietrich, G. Schell, E.C. Bucharsky, R. Oberacker, M.J. Hoffmann, W. Schabel, M. Kind, H. Martin, Determination of the thermal properties of ceramic sponges. Int. J. Heat Mass Transf. 53, 198–205 (2010)

    Article  Google Scholar 

  17. J. Randrianalisoa, D. Baillis, C.L. Martin, R. Dendievel, Microstructure effects on thermal conductivity of open-cell foams generated from the Laguerree Voronoï tessellation method. Int. J. Therm. Sci. 98, 277–286 (2015)

    Article  Google Scholar 

  18. C.Y. Zhao, T.J. Lu, H.P. Hodson, Thermal radiation in ultralight metal foams with open cells. Int. J. Heat Mass Transf. 47, 2927–2939 (2004)

    Article  Google Scholar 

  19. L.R. Glicksman, J. Steward, The measurement of the morphology of closet cell which control the overall thermal conductivity, in Third Symposium on Insulation Materials: Testing and Applications (ASTM, Quebec, 1997), pp. 307–334

  20. D. Doermann, J.F. Sacadura, Heat transfer in open cell foam. ASME J. Heat Transf. 118, 88–93 (1996)

    Article  Google Scholar 

  21. J. Kuhn, H.P. Ebert, M.C. Arduini-Schuster, D. Büttner, J. Fricke, Thermal transport in polystyrene and polyurethane foam insulations. Int. J. Heat Mass Transf. 35, 1795–1801 (1992)

    Article  Google Scholar 

  22. E. Placido, M.C. Arduini-Schuster, J. Kuhn, Thermal properties predictive model for insulating foams. Infrared Phys. Technol. 46, 219–231 (2005)

    Article  ADS  Google Scholar 

  23. R. Coquard, D. Baillis, D. Quenard, Radiative properties of expanded polystyrene foams. J. Heat Transf. 131, 012702.1–012702.10 (2009)

    Google Scholar 

  24. C. Tseng, A.D. Swanson, R. Viskanta, R.L. Sikorski, M.Y. Chen, Effect of foam properties on radiative properties of open-cell silicon carbide foams. J. Quant. Spectrosc. Radiat. Transf. 113, 1503–1507 (2012)

    Article  ADS  Google Scholar 

  25. P. Parthasarathy, P. Habisreuther, N. Zarzalis, Identification of radiative properties of reticulated ceramic porous inert media using ray tracing technique. J. Quant. Spectrosc. Radiat. Transf. 113, 1961–1969 (2012)

    Article  ADS  Google Scholar 

  26. S. Cunsolo, M. Oliviero, W.M. Harris, A. Andreozzi, N. Bianco, W.K.S. Chiu, V. Naso, Monte Carlo determination of radiative properties of metal foams: comparison between idealized and real cell structures. Int. J. Therm. Sci. 87, 94–102 (2015)

    Article  Google Scholar 

  27. B. Dietrich, T. Fischedick, S. Heissler, P. Weidler, C. Wöll, M. Kind, Optical parameters for characterization of thermal radiation in ceramic sponges—experimental results and correlation. Int. J. Heat Mass Transf. 79, 655–665 (2014)

    Article  Google Scholar 

  28. T. Fischedick, M. Kind, B. Dietrich, High temperature two-phase thermal conductivity of ceramic sponges with stagnant fluid—experimental results and correlation including thermal radiation. Int. J. Therm. Sci. 96, 1–11 (2015)

    Article  Google Scholar 

  29. R. Coquard, D. Rochais, D. Baillis, Modelling of the coupled conductive and radiative heat transfer in NiCrAl foams from phothothermal measurements and X-ray tomography. Spec. Top. Rev. Porous Media 2, 249–265 (2011)

    Article  Google Scholar 

  30. R. Coquard, B. Rousseau, D. Baillis, H. Gomart, Investigations of the radiative properties of Al–NiP foams using tomographic images and stereoscopic micrographs. Int. J. Heat Mass Transf. 55, 1606–1619 (2012)

    Article  Google Scholar 

  31. S. Cunsolo, R. Coquard, D. Baillis, Wilson.K.S. Chiu, Nicola. Bianco, Radiative properties of irregular open cell solid foams. Int. J. Therm. Sci. 117, 77–89 (2017)

    Article  Google Scholar 

  32. B. Zeghondy, E. Iacona, J. Taine, Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI). Int. J. Heat Mass Transf. 49, 2810–2819 (2006)

    Article  Google Scholar 

  33. B. Zeghondy, E. Iacona, J. Taine, Experimental and RDFI calculated radiative properties of a mullite foam. Int. J. Heat Mass Transf. 49, 3702–3707 (2006)

    Article  Google Scholar 

  34. M. Tancrez, J. Taine, Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique. Int. J. Heat Mass Transf. 47, 373–383 (2004)

    Article  Google Scholar 

  35. J. Petrasch, P. Wyss, A. Steinfeld, Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectrosc. Radiat. Transf. 105, 180–197 (2007)

    Article  ADS  Google Scholar 

  36. T.J. Hendricks, J.R. Howell, Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics. J. Heat Transf. 118, 79–87 (1996)

    Article  Google Scholar 

  37. D. Baillis, M. Raynaud, J.F. Sacadura, Determination of spectral radiative properties of open cell foam: model validation. J. Thermophys. Heat Transf. 14, 137–143 (2000)

    Article  Google Scholar 

  38. M.J. Hale, M.S. Bohn, Measurement of the radiative transport properties of reticulated alumina foams, in ASME/ASES Joint Solar Energy Conference, Washington DC (USA) (1993), pp. 507–515

  39. P.F. Hsu, J.R. Howell, Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia. Exp. Heat Transf. 5, 293–313 (1992)

    Article  ADS  Google Scholar 

  40. R. Coquard, D. Rochais, D. Baillis, Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams. Int. J. Heat Mass Transf. 52, 4907–4918 (2009)

    Article  Google Scholar 

  41. M. Grujicic, C.L. Zhao, S.B. Biggers, J.M. Kennedy, D.R. Morgan, Heat transfer and effective thermal conductivity analyses in carbon-based foams for use in thermal protection systems. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 219, 217–230 (2006)

    Google Scholar 

  42. C.C. Tseng, R.L. Sikorski, R. Viskanta, M.Y. Chen, Effect of foam properties on heat transfer in high temperature open-cell foam inserts. J. Am. Ceram. Soc. 95, 2015–2021 (2012)

    Article  Google Scholar 

  43. D.W. Marquardt, An algorithm for least-squares estimation of non-linear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  Google Scholar 

  44. S.Y. Zhao, B.M. Zhang, S.Y. Du, An inverse analysis to determine conductive and radiative properties of a fibrous medium. J. Quant. Spectrosc. Radiat. Transf. 110, 1111–1123 (2009)

    Article  ADS  Google Scholar 

  45. K. Daryabeigi, Heat Transfer in High-Temperature Fibrous Insulation. AIAA Paper 2002-3332

  46. M.F. Modest, Radiative Heat Transfer, International Edition, 2nd edn. (McGraw Hill, New York, 2003), pp. 225–250

    Google Scholar 

  47. E.M. Sparrow, R.D. Cess, Radiation Heat Transfer, Augmented edition (McGraw-Hill, New York, 1978), pp. 255–271

    Google Scholar 

Download references

Acknowledgements

This work was supported by Pre-research Key Laboratory Foundation of General Armament Department of China (Grant No. JZ20180035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuyuan Zhao or Wenjiao Zhang.

Appendix

Appendix

The transient temperature responses in the medium can be obtained by solving nonlinear energy equation in combination with radiative transfer equation. The following assumptions are introduced for this research: 1) a plane-parallel, open-cellular porous plate is installed horizontally and bounded by two opaque diffuse solid plates; 2) the porous plate is heated from above and cooled from below; 3) heat transfer across the plate is due to conduction and radiation; 4) the porous plate is homogeneous and capable of emitting, absorbing and anisotropically scattering thermal radiation; and 5) there exists unique equivalent value for each thermal parameter in the entire temperature range of interest to substitute the real thermal property for simulation of global equivalent thermal behavior of material. Under these assumptions, the energy equation can be written as follows [46, 47]:

$$ \rho C\left( T \right)\frac{{\partial T\left( {x,t} \right)}}{\partial t} = - \frac{{\partial q_{c} \left( {x,t} \right)}}{\partial x} - \frac{{\partial q_{r} \left( {x,t} \right)}}{\partial x} $$
(4)

Mathematically, the initial and thermal boundary conditions are thus the following:

$$ T\left( {x,0} \right) = T_{0} $$
(5)
$$ T\left( {0,t} \right) = T_{hot} \left( t \right) $$
(6)
$$ T\left( {L,t} \right) = T_{cold} \left( t \right) $$
(7)

The conductive heat flux qc is defined by:

$$ q_{c} \left( {x,t} \right) = - \tilde{\lambda }_{two - phase} \frac{{\partial T\left( {x,t} \right)}}{\partial x} $$
(8)

Given the radiation intensity at each point of the medium, in each direction and at each time, the radiative heat flux qr is then defined by:

$$ q_{r} \left( {x,t} \right) = 2\pi \mathop \int \limits_{ - 1}^{1} I\left( {x,\mu ,t} \right)\mu d\mu $$
(9)

The radiation intensity field in an absorbing-emitting-scattering gray medium is governed by the radiative transfer equation (RTE). For a 1D radiation heat transfer, the RTE can be expressed by [46]

$$ {\upmu}\frac{{\partial I\left({x,\mu,t}\right)}}{\partial x}=-\tilde{\beta}I\left({x,\mu,t} \right) + \tilde{\beta }\left( {1 - \tilde{\omega }} \right)I_{b} \left( T \right) + \frac{{\tilde{\beta }\tilde{\omega }}}{2}\mathop \int \limits_{ - 1}^{1} {{\tilde{\Phi }}}\left( {\mu^{\prime } ,\mu } \right)I\left( {x,\mu^{\prime } ,t} \right)d\mu^{\prime } $$
(10)

In Eq. 10, the terms on the right-hand side describe, respectively, the extinction phenomena, the internal emission and the intensity of the scattering in the μ direction.

When the surface bounding of the medium is gray and emits and reflects diffusely, then the radiative boundary conditions for Eq. 10 are given by

$$ I\left( {0,\mu ,t} \right) = \varepsilon_{1} I_{b} \left( T \right) + 2\left( {1 - \varepsilon_{1} } \right)\mathop \int \limits_{ - 1}^{0} I\left( {0,\mu^{\prime } ,t} \right)\left| {\mu^{\prime } } \right|d\mu^{\prime } \quad 0 < {\upmu } \le 1 $$
(11a)
$$ I\left( {L,\mu ,t} \right) = \varepsilon_{2} I_{b} \left( T \right) + 2\left( {1 - \varepsilon_{2} } \right)\mathop \int \limits_{0}^{1} I\left( {L,\mu^{\prime } ,t} \right)\mu^{\prime } d\mu^{\prime } \quad - 1 \le {\upmu }<0 $$
(11b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Sun, X., Que, Q. et al. Influence of Scattering Phase Function on Estimated Thermal Properties of Al2O3 Ceramic Foams. Int J Thermophys 40, 11 (2019). https://doi.org/10.1007/s10765-018-2473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2473-1

Keywords

Navigation