Skip to main content
Log in

Absorption and Scattering Behavior of Nanofluids in the Visible Range

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The use of plasmonic nanofluids in photothermal applications, such as solar thermal receivers, is a strong subject in current research. Additionally, other fields show interests in basefluids, of which the optical properties are tuned by adding nanoparticles. Exemplary research activities are plasmonic hyperthermia or nanoparticle-based sunscreen products. However, chosing the appropriate nanoparticle material is of great importance for the efficiency of such systems. The ‘classical’ approach is to measure the absorption or scattering behavior of known nanofluids, followed by an estimation whether or not this fluid is suitable for the designated application. This paper shows up a different approach: a method is presented to be used as a guided search for a global optimal nanoparticle material for a certain task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Ichinose, Y. Ozaki, S. Kashu, Superfine Particle Technology (Springer, London, 1992)

    Book  Google Scholar 

  2. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78(6), 718 (2001)

    Article  ADS  Google Scholar 

  3. J. Buongiorno, D.C. Venerus, et al., J. Appl. Phys. 106(9), 094312 (2009). doi:10.1063/1.3245330

  4. W.H. Lee, C.K. Rhee, et al., Nanoscale Res. Lett. 6(1), 258 (2011). doi:10.1186/1556-276X-6-258, http://www.nanoscalereslett.com/content/pdf/1556-276X-6-258.pdf

  5. K. Khanafer, K. Vafai, Int. J. Heat Mass Transf. 54(19–20), 4410 (2011). doi:10.1016/j.ijheatmasstransfer.2011.04.048, http://www.engr.ucr.edu/~vafai/Publications/2011/khan2.pdf

  6. P. Keblinski, R. Prasher, J. Eapen, J. Nanopart. Res. 10(7), 1089 (2008). doi:10.1007/s11051-007-9352-1

    Article  Google Scholar 

  7. G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36(7), 1367 (2015). doi:10.1007/s10765-015-1856-9

    Article  ADS  Google Scholar 

  8. D.C. Venerus, J. Buongiorno, et al., Appl. Rheol. 20(4), 44582 (2010)

  9. R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanoscale Res. Lett. 6(1), 225 (2011). doi:10.1186/1556-276X-6-225

    Article  ADS  Google Scholar 

  10. V. Khullar, H. Tyagi, in Proceedings of the 37th National & 4th International Conference on Fluid Mechanics and Fluid Power (2010), http://www.me.iitb.ac.in/~fmfp/FMFP%20PROC/bn_06.pdf

  11. J. Eggers, S. Kabelac, in International Heat Transfer Conference 15. doi:10.1615/IHTC15.nmt.009153

  12. D. Jing, Y. Hu, M. Liu, J. Wei, L. Guo, Solar Energy 112, 30 (2015). doi:10.1016/j.solener.2014.11.008

    Article  ADS  Google Scholar 

  13. A. Kasaeian, A.T. Eshghi, M. Sameti, Renew. Sust. Energ. Rev. 43, 584 (2015). doi:10.1016/j.rser.2014.11.020

    Article  Google Scholar 

  14. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Transfer 57(2), 582 (2013). doi:10.1016/j.ijheatmasstransfer.2012.10.037

    Article  Google Scholar 

  15. L. Lorenz, Lysbevaegelsen i og uden for en af plane Lysbølger belyst Kugle, Det Kongelige Danske Videnskabernes Selskabs skrifter / Naturvidenskabelig og mathematisk afdeling, vol. R. 6, Bd. 6,1 (Luno, Kjøbenhavn, 1890)

  16. G. Mie, Annalen der Physik 330(3), 377 (1908). doi:10.1002/andp.19083300302

    Article  ADS  Google Scholar 

  17. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim, 1998). doi:10.1002/9783527618156

    Book  Google Scholar 

  18. M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, Kidlington, 2013)

    Google Scholar 

  19. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley-VCH, Weinheim, 2011), http://onlinelibrary.wiley.com/book/10.1002/9783527633135

  20. J.R. Howell, R. Siegel, M.P. Mengüç, Thermal radiation heat transfer: John R. Howell, Robert Siegel, M. Pinar Mengüç, 5th edn. (CRC Press, Boca Raton, FL, 2011)

  21. I.D. Mayergoyz, Plasmon Resonances in Nanoparticles. World Scientific Series in Nanoscience and Nanotechnology, vol. 6 (World Scientific, Singapore, 2013)

    Book  Google Scholar 

  22. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  23. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25 (Springer, Berlin, 1995)

    Book  Google Scholar 

  24. H.D. Baehr, K. Stephan, Wärme- und Stoffübertragung: Mit ... zahlreichen Tabellen sowie 62 Beispielen und 94 Aufgaben, 7th edn. (Springer, Berlin, 2010)

  25. A. Ghadimi, R. Saidur, H. Metselaar, Int. J. Heat Mass Transfer 54(17–18), 4051 (2011). doi:10.1016/j.ijheatmasstransfer.2011.04.014

    Article  Google Scholar 

  26. W. Yu, H. Xie, J. Nanomater. 2012(4), 1 (2012). doi:10.1155/2012/435873

    MathSciNet  Google Scholar 

  27. Y. Hwang, J.-K. Lee, J.-K. Lee, Y.-M. Jeong, S.-i. Cheong, Y.-C. Ahn, S.H. Kim, Powder Technol. 186(2), 145 (2008). doi:10.1016/j.powtec.2007.11.020

  28. E.D. Palik, G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, London, 1997)

    Google Scholar 

  29. Sopra S.A. Database (15.09.2015), http://www.sspectra.com/sopra.html

  30. Filmetrics Refractive Index Database (15.09.2015), http://www.filmetrics.de/refractive-index-database

  31. J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3(4), 485 (2003). doi:10.1021/nl0340475

    Article  ADS  Google Scholar 

  32. Q. Zhu, Y. Cui, L. Mu, L. Tang, Int. J. Thermophys. 34(12), 2307 (2013). doi:10.1007/s10765-012-1208-y

  33. M.E. Burnett, S.Q. Wang, Photodermatol. Photoimmunol. Photomed. 27(2), 58 (2011). doi:10.1111/j.1600-0781.2011.00557.x

    Article  Google Scholar 

  34. H. Sato, M. Ikeya, J. Appl. Phys. 95(6), 3031 (2004). doi:10.1063/1.1650561

    Article  ADS  Google Scholar 

  35. Q. Li, L. Xia, Z. Zhang, M. Zhang, Nanoscale Res. Lett. 5(9), 1487 (2010). doi:10.1007/s11671-010-9666-2

    Article  ADS  Google Scholar 

  36. A. Becheri, M. Dürr, P. Lo Nostro, P. Baglioni, J. Nanopart. Res. 10(4), 679 (2008). doi:10.1007/s11051-007-9318-3

    Article  Google Scholar 

  37. H. Yoshikawa, S. Adachi, Jpn. J. Appl. Phys. 36(10R), 6237 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rudolf Eggers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggers, J.R., Kabelac, S. Absorption and Scattering Behavior of Nanofluids in the Visible Range. Int J Thermophys 36, 2769–2783 (2015). https://doi.org/10.1007/s10765-015-1992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1992-2

Keywords

Navigation