Skip to main content
Log in

Measurement and Prediction of the Thermal Conductivity of Tricyanomethanide- and Tetracyanoborate-Based Imidazolium Ionic Liquids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of ten ionic liquids (ILs) based on the anions \([\mathrm{C(CN)}_{3}]^{-}\) (tricyanomethanide) and \([\mathrm{B(CN)}_{4}]^{-}\) (tetracyanoborate) carrying a homologous series of the [alkyl-MIM]\(^{+}\) (1-alkyl-3-methylimidazolium) cations [EMIM]\(^{+}\)(ethyl), [BMIM]\(^{+}\) (butyl) [HMIM]\(^{+}\) (hexyl), [OMIM]\(^{+}\) (octyl), [DMIM]\(^{+}\) (decyl) was measured by a steady-state guarded parallel-plate instrument in the temperature range between (283.15 and 353.15) K at atmospheric pressure with a total uncertainty of 5 % (\(k\,=\,2\)). Furthermore, the refractive index required for data evaluation and the density, which is an important property in the developed prediction method for the thermal conductivity, were determined. In general, the measured thermal conductivities of the probed ILs decrease with increasing temperature and increasing alkyl-chain length of the cation. Regarding the influence of the anion, somewhat smaller values for the \([\mathrm{B(CN)}_{4}]^{-}\)-based ILs compared to the \([\mathrm{C(CN)}_{3}]^{-}\)-based ILs carrying the same cation are observed. Our previously developed simple prediction method for the thermal conductivity of ILs at 293.15 K using only information on the molar mass and the density could be improved. By the combination of this approach with the temperature dependence of the density, an extended empirical correlation additionally describing the temperature dependence of the thermal conductivity of ILs is recommended. This correlation represents all experimental thermal-conductivity data in the literature with a standard deviation of less than 7 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2007)

    Book  Google Scholar 

  2. M. Smiglak, A. Metlen, Acc. Chem. Res. 40, 1182 (2007)

    Article  Google Scholar 

  3. H. Chen, Y. He, J. Zhu, H. Alias, Y. Ding, P. Nancarrow, C. Hardacre, D. Rooney, C. Tan, Int. J. Heat Fluid Flow 29, 149 (2008)

    Article  Google Scholar 

  4. W. Chen, L. Qiu, S. Liang, X. Zheng, D. Tang, Thermochim. Acta 560, 1 (2013)

    Article  Google Scholar 

  5. Q.-L. Chen, K.-J. Wu, C.-H. He, J. Chem. Eng. Data 58, 2058 (2013)

    Article  Google Scholar 

  6. A.G.M. Ferreira, P.N. Simões, A.F. Ferreira, M.A. Fonseca, M.S.A. Oliveira, A.S.M. Trino, J. Chem. Thermodyn. 64, 80 (2013)

    Article  Google Scholar 

  7. E.B. Fox, A.E. Visser, N.J. Bridges, J.W. Amoroso, Energy Fuels 27, 3385 (2013)

    Article  Google Scholar 

  8. J.M.P. França, S.I.C. Vieira, M.J.V. Lourenço, S.M.S. Murshed, C.A. Nieto de Castro, J. Chem. Eng. Data 58, 467 (2013)

    Article  Google Scholar 

  9. C. Frez, G.J. Diebold, C.D. Tran, S. Yu, J. Chem. Eng. Data 51, 1250 (2006)

    Article  Google Scholar 

  10. A.P. Fröba, M.H. Rausch, K. Krzeminski, D. Assenbaum, P. Wasserscheid, A. Leipertz, Int. J. Thermophys. 31, 2059 (2010)

    Article  ADS  Google Scholar 

  11. R.L. Gardas, R. Ge, P. Goodrich, C. Hardacre, A. Hussain, D.W. Rooney, J. Chem. Eng. Data 55, 1505 (2010)

    Article  Google Scholar 

  12. R. Ge, C. Hardacre, P. Nancarrow, D.W. Rooney, J. Chem. Eng. Data 52, 1819 (2007)

    Article  Google Scholar 

  13. C.A. Nieto de Castro, M.J.V. Lourenço, A.P.C. Ribeiro, E. Langa, S.I.C. Vieira, J. Chem. Eng. Data 55, 653 (2010)

    Article  Google Scholar 

  14. A.P.C. Ribeiro, S.I.C. Vieira, P. Goodrich, C. Hardacre, M.J.V. Lourenço, C.A. Nieto de Castro, J. Nanofluids 2, 55 (2013)

    Article  Google Scholar 

  15. D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, C. Yokoyama, Int. J. Thermophys. 28, 1147 (2007)

    Article  ADS  Google Scholar 

  16. D. Tomida, S. Kenmochi, T. Tsukada, C. Yokoyama, Netsu Bussei 20, 173 (2007)

    Article  Google Scholar 

  17. D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, Q. Bao, C. Yokoyama, Int. J. Thermophys. 33, 959 (2012)

    Article  ADS  Google Scholar 

  18. D. Tomida, S. Kenmochi, K. Qiao, T. Tsukada, C. Yokoyama, Fluid Phase Equilib. 340, 31 (2013)

  19. M.E. Van Valkenburg, R.L. Vaughn, M. Williams, J.S. Wilkes, Thermochim. Acta 425, 181 (2005)

    Article  Google Scholar 

  20. B. Wang, X. Wang, W. Lou, J. Hao, Nanoscale Res. Lett. 6, 259 (2011)

    Article  ADS  Google Scholar 

  21. B. Wang, X. Wang, W. Lou, J. Hao, J. Colloid Interface Sci. 362, 5 (2011)

    Article  Google Scholar 

  22. F. Wang, L. Han, Z. Zhang, X. Fang, J. Shi, W. Ma, Nanoscale Res. Lett. 7, 314 (2012)

    Article  ADS  Google Scholar 

  23. H. Liu, E.J. Maginn, A.E. Visser, N.J. Bridges, E.B. Fox, Ind. Eng. Chem. Res. 51, 7242 (2012)

    Article  Google Scholar 

  24. C.M. Tenney, M. Massel, J.M. Mayes, M. Sen, J.F. Brennecke, E.J. Maginn, J. Chem. Eng. Data 59, 391 (2014)

    Article  Google Scholar 

  25. V.D. Bhatt, K. Gohil, Thermochim. Acta 556, 23 (2013)

    Article  Google Scholar 

  26. T.J. Abraham, D.R. MacFarlane, R.H. Baughman, L. Jin, N. Li, J.M. Pringle, Electrochim. Acta 113, 87 (2013)

    Article  Google Scholar 

  27. R.L. Gardas, J.A.P. Coutinho, AIChE J. 55, 1274 (2009)

    Article  Google Scholar 

  28. K.-J. Wu, C.-X. Zhao, C.-H. He, Fluid Phase Equilib. 339, 10 (2013)

    Article  Google Scholar 

  29. Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, AIChE J. 59, 1348 (2013)

    Article  Google Scholar 

  30. A.Z. Hezave, S. Raeissi, M. Lashkarbolooki, Ind. Chem. Eng. Res. 51, 9886 (2012)

    Article  Google Scholar 

  31. S.A. Shojaee, S. Farzam, A.Z. Hezave, M. Lashkarbolookic, S. Ayatollahid, Fluid Phase Equilib. 354, 199 (2013)

    Article  Google Scholar 

  32. K.-J. Wu, Q.-L. Chen, C.-H. He, AIChE J. 60, 1120 (2014)

  33. M. Marszalek, Z. Fei, D.-R. Zhu, R. Scopelliti, P.J. Dyson, S.M. Zakeeruddin, M. Grätzel, Inorg. Chem. 50, 11561 (2011)

  34. D. Kuang, P. Wang, S. Ito, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 128, 7732 (2006)

    Article  Google Scholar 

  35. S.M. Mahurin, P.C. Hillesheim, J.S. Yeary, D. Jianga, S. Dai, RSC Adv. 2, 11813 (2012)

    Article  Google Scholar 

  36. S.M. Mahurin, J.S. Lee, G.A. Baker, H. Luo, S. Dai, J. Membr. Sci. 353, 177 (2010)

    Article  Google Scholar 

  37. T.M. Koller, M.H. Rausch, J. Ramos, P.S. Schulz, P. Wasserscheid, I.G. Economou, A.P. Fröba, J. Phys. Chem. B 117, 8512 (2013)

  38. T.M. Koller, M.H. Rausch, P.S. Schulz, M. Berger, P. Wasserscheid, I.G. Economou, A. Leipertz, A.P. Fröba, J. Chem. Eng. Data 57, 828 (2012)

    Article  Google Scholar 

  39. M.H. Rausch, K. Krzeminski, A. Leipertz, A.P. Fröba, Int. J. Heat Mass Transf. 58, 610 (2013)

    Article  Google Scholar 

  40. Y.M. Naziev, M.M. Bashirov, I.M. Abdulagatov, Fluid Phase Equilib. 226, 221 (2004)

    Article  Google Scholar 

  41. R. Braun, S. Fischer, A. Schaber, Wärme- und Stoffübertragung 17, 121 (1983)

    Article  ADS  Google Scholar 

  42. M. Kohler, Z. Angew. Phys. 18, 356 (1965)

    Google Scholar 

  43. H. Poltz, Int. J. Heat Mass Transf. 8, 515 (1965)

    Article  MATH  Google Scholar 

  44. M.L.V. Ramires, C.A. Nieto de Castro, R.A. Perkins, Y. Nagasaka, A. Nagashima, M.J. Assael, W.A. Wakeham, J. Phys. Chem. Ref. Data 29, 133 (2000)

    Article  ADS  Google Scholar 

  45. M. Deetlefs, K.R. Seddon, M. Shara, Phys. Chem. Chem. Phys. 8, 642 (2006)

    Article  Google Scholar 

  46. P. Brocos, A. Piñeiro, R. Bravo, A. Amigo, Phys. Chem. Chem. Phys. 5, 550 (2003)

    Article  Google Scholar 

  47. C.M.S.S. Neves, K.A. Kurnia, J.A.P. Coutinho, I.M. Marrucho, J.N. Canongia Lopes, M.G. Freire, L.P.N. Rebelo, J. Phys. Chem. B 117, 10271 (2013)

    Article  Google Scholar 

  48. S. Seki, S. Tsuzuki, K. Hayamizu, Y. Umebayashi, N. Serizawa, K. Takei, H. Miyashiro, J. Chem. Eng. Data 57, 2211 (2012)

    Article  Google Scholar 

  49. A.P. Fröba, H. Kremer, A. Leipertz, J. Phys. Chem. B 112, 12420 (2008)

    Article  Google Scholar 

  50. B. Hasse, J. Lehmann, D. Assenbaum, P. Wasserscheid, A. Leipertz, A.P. Fröba, J. Chem. Eng. Data 54, 2576 (2009)

    Article  Google Scholar 

  51. R.L. Gardas, M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, J. Chem. Eng. Data 52, 1881 (2007)

    Article  Google Scholar 

  52. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B 108, 16593 (2004)

    Article  Google Scholar 

  53. C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, J. Chem. Eng. Data 2004, 954 (2004)

    Article  Google Scholar 

  54. P.J. Carvalho, T. Regueira, L.M.N.B.F. Santos, J. Fernandez, J.A.P. Coutinho. J. Chem. Eng. Data 55, 645 (2010)

  55. U. Domańska, A. Marciniak, J. Phys. Chem. B 114, 16542 (2010)

    Article  Google Scholar 

  56. M. Larriba, P. Navarro, J. García, F. Rodríguez, Ind. Chem. Eng. Res. 52, 2714 (2013)

    Article  Google Scholar 

  57. Y. Yoshida, K. Muroi, A. Otsuka, G. Saito, M. Takahashi, T. Yoko, Inorg. Chem. 43, 1458 (2004)

    Article  Google Scholar 

  58. C-Therm Technologies Ltd. (2014), http://www.ctherm.com/products/tci_thermal_conductivity/specifications/. Accessed 13 May 2014

  59. K.R. Harris, M. Kanakubo, L.A. Woolf, J. Chem. Eng. Data 52, 1080 (2007)

    Article  Google Scholar 

  60. Z. He, Z. Zhao, X. Zhang, H. Feng, Fluid Phase Equilib. 298, 83 (2009)

    Article  Google Scholar 

  61. C.M.S.S. Neves, P.J. Carvalho, M.G. Freire, J.A.P. Coutinho, J. Chem. Thermodyn. 43, 948 (2011)

    Article  Google Scholar 

  62. L.I.N. Tomé, R.L. Gardas, P.J. Carvalho, M.J. Pastoriza-Gallego, M.M. Piñeiro, J.A.P. Coutinho, J. Chem. Eng. Data 56, 2205 (2011)

    Article  Google Scholar 

  63. C.E. Ferreira, N.M.C. Talavera-Prieto, I.M.A. Fonseca, A.T.G. Portugal, A.G.M. Ferreira, J. Chem. Thermodyn. 47, 183 (2012)

    Article  Google Scholar 

  64. F.M. Gaciño, T. Regueira, L. Lugo, M.J.P. Comuñas, J. Fernández, J. Chem. Eng. Data 56, 4984 (2011)

    Article  Google Scholar 

  65. C. Schreiner, S. Zugmann, R. Hartl, H.J. Gores, J. Chem. Eng. Data 55, 1784 (2010)

    Article  Google Scholar 

  66. L.I.N. Tomé, P.J. Carvalho, M.G. Freire, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, R.L. Gardas, J. Chem. Eng. Data 53, 1914 (2008)

    Article  Google Scholar 

  67. R.L. Gardas, M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, J. Chem. Eng. Data 52, 80 (2007)

    Article  Google Scholar 

  68. J. Jacquemin, R. Ge, P. Nancarrow, D.W. Rooney, M.F. Costa Gomes, A.A.H. Pádua, C. Hardacre. J. Chem. Eng. Data 53, 716 (2008)

  69. R.L. Gardas, H.F. Costa, M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, J. Chem. Eng. Data 53, 805 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) by funding the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative. In addition, financial support from the 7th European Commission Framework Program for Research and Technological Development for the project “Novel Ionic Liquid and Supported Ionic Liquid Solvents for Reversible Capture of CO\(_{2}\)” (IOLICAP Project No. 283077) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas P. Fröba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koller, T.M., Schmid, S.R., Sachnov, S.J. et al. Measurement and Prediction of the Thermal Conductivity of Tricyanomethanide- and Tetracyanoborate-Based Imidazolium Ionic Liquids. Int J Thermophys 35, 195–217 (2014). https://doi.org/10.1007/s10765-014-1617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1617-1

Keywords

Navigation