Skip to main content
Log in

Thermodynamic Properties of MgSc and AlSc from First-Principles Phonon Calculations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermodynamic properties of intermetallic compounds MgSc and AlSc with CsCl-type B2 structure have been studied by performing density functional theory and density functional perturbation theory within the quasi-harmonic approximation in comparison with NiAl. The linear thermal expansion of the lattice, coefficients of thermal expansion, isothermal bulk modulus, phonon dispersions, phonon density of states, and specific heat capacities at constant volume and constant pressure have been obtained. Comparisons have been made with available experimental data and the results of previous calculations, and good agreement has been obtained. Our results show that the thermal expansion of MgSc is larger than that of AlSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srivastava V., Sanyal S.P., Rajagopalan M.: Physica B 403, 3615 (2008)

    Article  ADS  Google Scholar 

  2. Wu Y., Hu W.: Eur. Phys. J. B 60, 75 (2007)

    Article  ADS  Google Scholar 

  3. Tao X., Ouyang Y., Liu H., Zeng F., Feng Y., Jin Z.: Phys. B 399, 27 (2007)

    Article  ADS  Google Scholar 

  4. Lathabai S., Lioyd P.G.: Acta. Mater. 50, 4275 (2002)

    Article  Google Scholar 

  5. Maeng D.Y., Lee J.H., Hong S.I.: Mater. Sci. Eng. A 357, 188 (2003)

    Article  Google Scholar 

  6. Asta M., Ozolinš V.: Phys. Rev. B 64, 094104 (2001)

    Article  ADS  Google Scholar 

  7. Tao X., Ouyang Y., Liu H., Feng Y., Du Y., Jin Z.: Solid State Commun. 148, 314 (2008)

    Article  ADS  Google Scholar 

  8. Tao X., Ouyang Y., Liu H., Zeng F., Feng Y., Jin Z.: Comput. Mater. Sci. 40, 226 (2007)

    Article  Google Scholar 

  9. Hu W., Xu H., Shu X., Yuan X., Gao B., Zhang B.: J. Phys. D 33, 711 (2000)

    Article  ADS  Google Scholar 

  10. Kang Y.B., Pelton A.D., Chartrand P., Fuerst C.D.: Comput. Coupling Phase Diag. Thermochem. 32, 413 (2008)

    Google Scholar 

  11. Nguyen-Manh D., Pettifor D.G.: Intermetallics 7, 1095 (1999)

    Article  Google Scholar 

  12. Uǧur Ş., Arıkan N., Soyalp F., Uǧur G.: Comput. Mater. Sci. 48, 866 (2010)

    Article  Google Scholar 

  13. Born M., Huang K.: Dynamical Theory of Crystal Lattices. Oxford University, New York (1954)

    MATH  Google Scholar 

  14. Baroni S., de Gironcoli S., Dal Corso A., Giannozzi P.: Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  15. Karki B.B., Wentzcovitch R.M., de Gironcoli S., Baroni S.: Science 286, 1705 (1999)

    Article  Google Scholar 

  16. Karki B.B., Wentzcovitch R.M., de Gironcoli S., Baroni S.: Phys. Rev. B 61, 8793 (2000)

    Article  ADS  Google Scholar 

  17. Giannozzi P., de Gironcoli S., Pavone P., Baroni S.: Phys. Rev. B 43, 7231 (1991)

    Article  ADS  Google Scholar 

  18. Kresse G., Hafner J.: Phys. Rev. B 48, 3115 (1993)

    Article  Google Scholar 

  19. Kresse G., Furthmüller J.: Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  20. Kresse G., Furthmüller J.: Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  21. Blöchl P.E.: Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  22. Kresse G., Joubert D.: Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  23. Perdew J.P., Burke K., Ernzerhof M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. Perdew J.P., Burke K., Ernzerhof M.: Phys. Rev. Lett. 78, 1396 (1996)

    Article  ADS  Google Scholar 

  25. Monkhorst H.J., Pack J.D.: Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  26. Methfessel M., Paxton A.T.: Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  27. Villars P., Calvert L.D.: Pearsons Handbook of Crystallographic Data for Intermetallic Phases, 2nd edn. ASM, Metals Park, OH (1991)

    Google Scholar 

  28. G. Kresse, M. Marsman, J. Furthmüller, VASP the guide, http://cms.mpi.univie.ac.at/vasp/

  29. Togo A., Oba F., Tanaka I.: Phys. Rev. B 78, 134106 (2008)

    Article  ADS  Google Scholar 

  30. A. Togo, Phonopy, http://phonopy.sourceforge.net/

  31. Grabowski B., Ismer L., Hickel T., Neugebauer J.: Phys. Rev. B 79, 134106 (2009)

    Article  ADS  Google Scholar 

  32. Vinet P., Rose J.H., Ferrante J., Smith J.R.: J. Phys. Condens. Matter 1, 1941 (1989)

    Article  ADS  Google Scholar 

  33. Mostoller M., Nicklow R.M., Zehner D.M., Lui S.C., Mundenar J.M., Plummer E.W.: Phys. Rev. B 40, 2856 (1989)

    Article  ADS  Google Scholar 

  34. Togo A., Chaput L., Tanaka I., Hug G.: Phys. Rev. B 81, 174301 (2010)

    Article  ADS  Google Scholar 

  35. Wang Y., Liu Z.K., Chen L.Q.: Acta. Mater. 52, 2665 (2004)

    Article  MathSciNet  Google Scholar 

  36. Touloukian Y.S., Kirby R.K., Taylor R.E., Desai P.D.: Thermophysical Properties of Matter, Thermal Expansion. Plenum, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Wang, S., Wu, X. et al. Thermodynamic Properties of MgSc and AlSc from First-Principles Phonon Calculations. Int J Thermophys 33, 300–310 (2012). https://doi.org/10.1007/s10765-012-1156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1156-6

Keywords

Navigation