Skip to main content

Advertisement

Log in

Abstract

Primatologists use the term fallback foods to denote resources of relatively low preference that are used seasonally when preferred foods are unavailable. We examine the assumption that fallback foods play an important role in shaping morphological adaptations, behavior, and socioecology in primates. We discuss operational definitions of preferred and fallback foods and suggest that the evolutionary importance of fallback foods applies more to adaptations for processing than for harvesting foods. Equally, we propose that preferred resources tend to drive adaptations for harvesting foods. We distinguish 2 classes of fallback foods according to their roles in the diet and their evolutionary effects. Staple fallback foods are available year-round, tend to be eaten throughout the year, and seasonally can constitute up to 100% of the diet. Filler fallback foods never constitute 100% of the diet, and may be completely avoided for weeks at a time. We suggest that the availability of the 2 classes of fallback foods have different effects on the socioecology of primate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Altmann, S. A. (1998). Foraging for survival. Chicago: Chicago University Press.

    Google Scholar 

  • Basabose, A. K. (2002). Diet composition of chimpanzees inhabiting the montane forest of Kahuzi, Democratic Republic of Congo. American Journal of Primatology, 58, 1–21.

    PubMed  Google Scholar 

  • Bauchop, T. (1971). Stomach microbiology of primates. Annual Review of Microbiology, 25, 429–436.

    PubMed  CAS  Google Scholar 

  • Bauchop, T. (1977). Foregut fermentation. In R. T. J. Clarke & T. Bauchop (Eds.), Microbial ecology of the gut (pp. 223–250). New York: Academic Press.

    Google Scholar 

  • Bauchop, T., & Martucci, R. W. (1968). Ruminant-like digestion of the langur monkey. Science, 161, 698–700.

    PubMed  CAS  Google Scholar 

  • Blake, J. G., Loiselle, B. A., Moermond, T. C., Levey, D. J., & Denslow, J. S. (1990). Quantifying abundance of fruits for birds in tropical habitats. Studies in Avian Biology, 13, 73–79.

    Google Scholar 

  • Boag, P. T., & Grant, P. R. (1981). Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galápagos. Science, 214, 82–85.

    PubMed  Google Scholar 

  • Brockman, D. K., & van Schaik, C. P. (2005). Seasonality in primates. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Cannon, C. H., & Leighton, M. (1994). Comparative locomotor ecology of gibbons and macaques: Selection of canopy elements for crossing gaps. American Journal of Physical Anthropology, 93, 505–524.

    PubMed  CAS  Google Scholar 

  • Cannon, C. H., & Leighton, M. (1996). Comparative locomotor ecology of gibbons and macaques: Does brachiation minimize travel costs? Tropical Biodiversity, 3, 261–267.

    Google Scholar 

  • Chapman, C. A. (1987). Flexibility in diets of three species of Costa Rican primates. Folia Primatologica, 49, 90–105.

    Article  Google Scholar 

  • Chapman, C. A., Wrangham, R. W., & Chapman, L. J. (1994). Indices of habitat-wide fruit abundance in tropical forests. Biotropica, 26, 160–171.

    Google Scholar 

  • Chesson, J. (1978). Measuring preference in selective predation. Ecology, 59, 211–215.

    Google Scholar 

  • Chesson, J. (1983). The estimation and analysis of preference and its relationship to foraging models. Ecology, 64, 1297–1304.

    Google Scholar 

  • Chivers, D. J., & Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet. Journal of Morphology, 166, 337–386.

    PubMed  CAS  Google Scholar 

  • Chivers, D. J., & Hladik, C. M. (1984). Diet and gut morphology in primates. In D. J. Chivers, B. A. Wood, & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 213–230). New York: Plenum Press.

    Google Scholar 

  • Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brains, and ecology. Journal of Zoology (London), 190, 309–323.

    Article  Google Scholar 

  • Cock, M. J. W. (1978). The assessment of preference. Journal of Animal Ecology, 47, 805–816.

    Google Scholar 

  • Conklin-Brittain, N. L., Wrangham, R. W., & Hunt, K. D. (1998). Dietary response of chimpanzees and Cercopithecines to seasonal variation in fruit abundance: II. Macronutrients. International Journal of Primatology, 19, 949–970.

    Google Scholar 

  • Davies, A. G. (1994). Colobine populations. In A. G. Davies, & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour, and evolution (pp. 285–310). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Davies, A. G., Bennett, E. L., & Waterman, P. G. (1988). Food selection by two South-east Asian colobine monkeys (Presbytis rubicunda and Presbytis melalophos) in relation to plant chemistry. Biological Journal of the Linnean Society, 34, 33–56.

    Google Scholar 

  • de A. Moura, A. C., & Lee, P. C. (2004). Capuchin stone tool use in a Caatinga Dry Forest. Science, 306, 1909.

    Google Scholar 

  • Dittus, W. P. J. (1979). The evolution of behaviors regulating density and age-specific sex ratios in a primate population. Behaviour, 69, 265–302.

    Google Scholar 

  • Dominy, N. J., & Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410, 363–366.

    PubMed  CAS  Google Scholar 

  • Dominy, N. J., Svenning, J.-C., & Li, W.-H. (2003). Historical contingency in the evolution of primate color vision. Journal of Human Evolution, 44, 25–45.

    PubMed  Google Scholar 

  • Doran, D. M., McNeilage, A., Greer, D., Bocian, C., Mehlman, P., & Shah, N. (2002). Western lowland gorilla diet and resource availability: New evidence, cross-site comparisons, and reflections on indirect sampling methods. American Journal of Primatology, 58, 91–116.

    PubMed  Google Scholar 

  • Dumont, E. R. (1995). Enamel thickness and dietary adaptation among extant primates and chiropterans. Journal of Mammalogy, 76, 1127–1136.

    Google Scholar 

  • Fleagle, J. G. (1984). Primate locomotion and diet. In D. J. Chivers, B. A. Wood & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 105–117). New York: Plenum Press.

    Google Scholar 

  • Galdikas, B. M. F. (1979). Orangutan adaptation at Tanjung Puting Reserve: Mating and ecology. In D. L. Hamburg & E. R. McCown (Eds.), The great apes (pp. 195–233). London: W. A. Benjamin.

    Google Scholar 

  • Gaulin, S. J. C., & Konner, M. J. (1977). On the natural diets of primates, including humans. In R. J. Wurtman & J. J. Wurtman (Eds), Nutrition and the brain (pp. 1–86). New York: Raven Press.

    Google Scholar 

  • Goldstein, S., Post, D., & Melnick, D. (1978). An analysis of cercopithecoid odontometrics. American Journal of Physical Anthropology, 49, 517–532.

    PubMed  CAS  Google Scholar 

  • Guillotin, M., Dubost, G., & Sabatier, D. (1994). Food choice and food competition among the three major primate species in French Guiana. Journal of Zoology (London), 233, 551–579.

    Google Scholar 

  • Hanya, G. (2004). Diet of a Japanese macaque troop in the coniferous forest of Yakusima. International Journal of Primatology, 25, 55–69.

    Google Scholar 

  • Hemingway, C. A., & Bynum, N. (2005). The influence of seasonality on primate diet and ranging. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates (pp. 57–104). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Hylander, W. L. (1975). Incisor size and diet in anthropoids with special reference to Cercopithecidae. Science, 189, 1095–1098.

    PubMed  CAS  Google Scholar 

  • Isbell, L. A. (1991). Contest and scramble competition: Patterns of female aggression and ranging behavior among primates. Behavioral Ecology, 2, 143–155.

    Google Scholar 

  • Isbell, L. A., Pruetz, J. D., Lewis, M., & Young, T. P. (1998). Locomotor activity differences between sympatric patas monkeys (Erythrocebus patas) and vervet monkeys (Cercopithecus aethiops): Implications for the evolution of long hindlimb length in Homo. American Journal of Physical Anthropology, 105, 199–207.

    PubMed  CAS  Google Scholar 

  • Janson, C. H., & van Schaik, C. P. (1993). Ecological risk aversion in juvenile primates: slow and steady wins the race. In M. E. Pereira & L. A. Fairbanks (Eds.), Juvenile primates (pp. 57–74). Oxford: Oxford University Press.

    Google Scholar 

  • Janson, C. H., & Chapman, C. A. (1999). Resources and primate community structure. In J. F. Fleagle, C. Janson, & K. E. Reed (Eds.), Primate communities (pp. 237–267). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Janson, C. H., Stiles, E. W., & White, D. W. (1986). Selection on plant fruiting traits by brown capuchin monkeys: A multivariate approach. In A. Estrada & T. H. Flemming (Eds.), Frugivores and seed dispersal (pp. 83–92). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Johnson, D. H. (1980). The comparison of usage and availability measurements for evaluating resource preference. Ecology, 61, 65–71.

    Google Scholar 

  • Kawecki, T. J. (1995). Demography of source-sink populations and the evolution of ecological niches. Evolutionary Ecology, 9, 38–44.

    Google Scholar 

  • Kay, R. F. (1984). On the anatomical feature to infer foraging behavior in extinct primates. In P. S. Rodman & J. G. H. Cant (Eds.), Adaptations for foraging in nonhuman primates (pp. 21–53). New York: Columbia University Press.

    Google Scholar 

  • Kay, R. N. B., & Davies, A. G. (1994). Digestive physiology. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour, and evolution (pp. 285–310). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Kinzey, W. G. (1978). Feeding behavior and molar features in two species of titi monkey. In D. J. Chivers & J. Herbert (Eds.), Recent advances in primatology, vol. 1: Behavior (pp. 373–385). London: Academic Press.

    Google Scholar 

  • Knott, C. D. (1998). Changes in orangutan caloric intake, energy balance, and ketones in response to fluctuating food availability. International Journal of Primatology, 19, 1061–1079.

    Google Scholar 

  • Knott, C. D. (2001). Female reproductive ecology of the apes: Implications for human evolution. In P. Ellison (Ed.), Reproductive ecology and human evolution (pp. 429–463) New York: Aldine.

    Google Scholar 

  • Knott, C. D. (2005). Energetic responses of food availability in the great apes; implications for hominin evolution. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates: Studies of living and extinct human and non-human primates (pp. 351–378). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Krebs, J. R., & Stephens, D. W. (1986). Foraging theory. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Laden, G., & Wrangham, R. W. (2005). The rise of the hominid as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and austalopith origins. Journal of Human Evolution, 49, 482–498.

    PubMed  Google Scholar 

  • Lambert, J. E. (1998). Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evolutionary Anthropology, 7, 8–20.

    Google Scholar 

  • Lambert, J. E. (2002). Digestive retention times in forest guenons (Cercopithecus spp.) with reference to chimpanzees (Pan troglodytes). International Journal of Primatology, 23, 1169–1185.

    Google Scholar 

  • Lambert, J. E., Chapman, C. A., Wrangham, R. W., & Conklin-Brittain, N. L. (2004). Hardness of cercopithecine foods: Implications for the critical function of enamel thickness in exploiting fallback foods. American Journal of Physical Anthropology, 125, 363–368.

    PubMed  Google Scholar 

  • Lechowicz, M. J. (1982). The sampling characteristics of electivity indices. Oecologia, 52, 22–30.

    Google Scholar 

  • Lee, P. C., & Hauser, M. D. (1998). Long-term consequences of changes in territory quality on feeding and reproductive strategies of vervet monkeys. Journal of Animal Ecology, 67, 347–358.

    Google Scholar 

  • Leigh, S. R. (1994). Ontogenetic correlates of diet in anthropoid primates. American Journal of Physical Anthropology, 94, 499–522.

    PubMed  CAS  Google Scholar 

  • Leighton, M. (1993). Modeling diet selectivity by Bornean orangutans: Evidence for integration of multiple criteria for fruit selection. International Journal of Primatology, 14, 257–313.

    Google Scholar 

  • Leighton, M., & Leighton, D. (1983). Vertebrate responses to fruiting seasonality within a Bornean rain forest. In S. L. Sutton, T. C. Whitmore, & A. C. Chadwick (Eds.), Tropical rain forest: Ecology and management (pp. 181–196). Boston: Blackwell.

    Google Scholar 

  • Lucas, P. (1979). The dental-dietary adaptations of mammals. Neues Jahrbuch für Geologies und Palaontologie, 8, 486–512.

    Google Scholar 

  • Lucas, P. W., & Peters, C. R. (2000). Function of postcanine tooth crown shape in mammals. In M. F. Teaford, M. M. Smith, & M. W. J. Ferguson (Eds.), Development, function, and evolution of teeth (pp. 282–289). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Lucas, P. W., Darvell, B. W., Lee, P. K. D., Yuen, T. D. B., & Choong, M. F. (1998). Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatologica, 69, 139–152.

    CAS  Google Scholar 

  • Lucas, P. W., Dominy, N. J., Riba-Hernandez, P., Stoner, K. E., Yamashita, N., Loria-Calderon, E., et al. (2003). Evolution and function of routine trichromatic vision in primates. Evolution, 57, 2636–2643.

    PubMed  Google Scholar 

  • Maas, M. C., & Dumont, E. R. (1999). Built to last: The structure, function, and evolution of primate dental enamel. Evolutionary Anthropology, 8, 133–152.

    Google Scholar 

  • Manly, B. J. F., McDonald, L. L., Thomas, D. L., McDonald, T. L., & Erikson, W. P. (2002). Resource selection by animals. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Marshall, A. J. (2004). The population ecology of gibbons and leaf monkeys across a gradient of Bornean forest types. Ph.D. thesis, Department of Anthropology, Harvard University, Cambridge, MA.

  • Marshall, A. J., & Leighton, M. (2006). How does food availability limit the population density of white-bearded gibbons? In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology of the apes and other primate (pp. 311–333). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • McConkey, K. R., Aldy, F., Ario, A., & Chivers, D. J. (2002). Selection of fruit by gibbons (Hylobates muelleri x agilis) in the rain forests of central Borneo. International Journal of Primatology, 23, 123–145.

    Google Scholar 

  • McConkey, K. R., Ario, A., Aldy, F., & Chivers, D. J. (2003). Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu, central Kalimantan. International Journal of Primatology, 24, 19–32.

    Google Scholar 

  • Mills, L. S., Soule, M. E., & Doak, D. F. (1993). The keystone-species concept in ecology and conservation. Bioscience, 43, 219–224.

    Google Scholar 

  • Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534–548.

    Google Scholar 

  • Milton, K. (1988). Foraging behavior and the evolution of primate cognition. In A. Whiten & R. W. Byrne (Eds.), Machiavellian intelligence: social expertise and the evolution of intellect in monkeys, apes, and humans (pp. 285–305). Oxford: Oxford University Press.

    Google Scholar 

  • Milton, K. (1998). Physiological ecology of howlers (Alouatta): Energetic and digestive considerations and comparison with the colobinae. International Journal of Primatology, 19, 513–548.

    Google Scholar 

  • Milton, K., & Demment, M. W. (1988). Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human diet. Journal of Nutrition, 118, 1082–1088.

    PubMed  CAS  Google Scholar 

  • Newton-Fisher, N. E. (1999). The diet of chimpanzees in the Budongo Forest Reserve, Uganda. African Journal of Ecology, 37, 344–354.

    Google Scholar 

  • Paine, R. T. (1969). A note on trophic complexity and community stability. American Naturalist, 103, 91–93.

    Google Scholar 

  • Paine, R. T. (1995). A conversation on refining the concept of keystone species. Conservation Biology, 9, 962–964.

    Google Scholar 

  • Peres, C. A. (2000). Identifying keystone plant resources in tropical forests: The case of gums from Parkia pods. Journal of Tropical Ecology, 16, 287–317.

    Google Scholar 

  • Pontzer, H. D., & Wrangham, R. W. (2004). Climbing and the daily energy cost of locomotion in wild chimpanzees: Implications for hominoid locomotor evolution. Journal of Human Evolution, 46, 317–335.

    PubMed  Google Scholar 

  • Porter, L. M. (2001). Dietary differences among sympatric Callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. International Journal of Primatology, 22, 961–992.

    Google Scholar 

  • Potts, R. (2004). Paleoenvironmental basis of cognitive evolution in great apes. American Journal of Primatology, 62, 209–228.

    PubMed  Google Scholar 

  • Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., et al. (1996). Challenges in the quest for keystones. BioScience, 46, 609–620.

    Google Scholar 

  • Powzyk, J. A., & Mowry, C. B. (2003). Dietary and feeding differences between sympatric Propithecus diadema diadema and Indri indri. International Journal of Primatology, 24, 1143–1162.

    Google Scholar 

  • Regan, B. C., Juliot, C., Simmen, B., Viénot, F., Charles-Dominique, P. C., & Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B– Biological Sciences, 356, 229–283.

    CAS  Google Scholar 

  • Remis, M. J. (2000). Initial studies on the contributions of body size and gastrointestinal passage rates to dietary flexibility among gorillas. American Journal of Physical Anthropology, 112, 171–180.

    PubMed  CAS  Google Scholar 

  • Remis, M. J., Dierenfeld, E. S., Mowry, C. B., & Carroll, R. W. (2001). Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central African Republic. International Journal of Primatology, 22, 807–836.

    Google Scholar 

  • Robinson, B. W., & Wilson, D. S. (1998). Optimal foraging, specialization, and a solution to Liem’s paradox. American Naturalist, 151, 223–235.

    PubMed  CAS  Google Scholar 

  • Rogers, M. E., Maisels, F., Williamson, E. A., Fernandez, M., & Tutin, C. E. G. (1990). Gorilla diet in the Lopé Reserve, Gabon: A nutritional analysis. Oecologia, 84, 326–339.

    Google Scholar 

  • Rosenberger, A. L. (1992). Evolution of feeding niches in new world monkeys. American Journal of Physical Anthropology, 88, 545–562.

    Google Scholar 

  • Rosenberger, A. L., & Kinzey, W. G. (1976). Functional patterns of molar occlusion in platyrrhine primates. American Journal of Physical Anthropology, 45, 281–298.

    PubMed  CAS  Google Scholar 

  • Russon, A. E., & Begun, D. R. (2004). Evolutionary origins of great ape intelligence: An integrated view. In A. E. Russon & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 353–368). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Schluter, D. (1994). Experimental evidence that competition promotes divergence and adaptive radiation. Science, 266, 798–801.

    PubMed  CAS  Google Scholar 

  • Schoener, T. W. (1982). The controversy over interspecific competition. American Scientist, 70, 586–595.

    Google Scholar 

  • Steenbeek, R., & van Schaik, C. P. (2001). Competition and group size in Thomas’s langurs (Presbytis thomasi): The folivore paradox revisited. Behavioral Ecology Sociobiology, 49, 100–110.

    Google Scholar 

  • Surridge, A. K., Osorio, D., & Mundy, N. I. (2003). Evolution and selection of trichromatic vision in primates. Trends in ecology and evolution, 18, 198–205.

    Google Scholar 

  • Temerin, L. A., & Cant, J. G. H. (1983). The evolutionary divergence of Old World monkeys and apes. American Naturalist, 122, 335–351.

    Google Scholar 

  • Terborgh, J. (1983). Five new world primates. Princeton, NJ: Princeton University. Press.

    Google Scholar 

  • Terborgh, J. (1986). Keystone plant resources in the tropical forest. In M. Soulé (Ed.), Conservation biology: The science of scarcity and diversity (pp. 330–344) Sunderland, MA: Sinauer.

    Google Scholar 

  • Tomasello, M., & Call, J. (1997). Primate cognition. New York: Oxford University Press.

    Google Scholar 

  • Tutin, C. E. G., Fernandez, M., Rogers, M. E., Williamson, E. A., & McGrew, W. C. (1991). Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lope Reserve, Gabon. Philosophical Transactions of the Royal Society of London B–Biological Sciences, 334, 179–186.

    CAS  Google Scholar 

  • Tutin, C. E. G., Ham, R. M., White, L. J. T., & Harrison, M. J. S. (1997). The primate community of the Lope Reserve, Gabon: Diets, responses to fruit scarcity, and effects on biomass. American Journal of Primatology, 42, 1–24.

    PubMed  CAS  Google Scholar 

  • Ungar, P. S. (1996a). Relationship of incisor size to diet and anterior tooth use in sympatric Sumatran anthropoids. American Journal of Physical Anthropology, 38, 145–156.

    Google Scholar 

  • Ungar, P. S. (1996b). Feeding height and niche separation in sympatric Sumatran monkeys and apes. Folia Primatologica, 67, 163–168.

    Google Scholar 

  • Ungar, P. (2004). Dental topography and diets of Australopithecus afarensis and early Homo. Journal of Human Evolution, 46, 605–622.

    PubMed  Google Scholar 

  • van Schaik, C. P., & Knott, C. D. (2001). Geographic variation in tool use on Neesia fruits in orangutans. American Journal of Physical Anthropology, 114, 331–342.

    PubMed  Google Scholar 

  • van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36, 719–741.

    PubMed  Google Scholar 

  • van Schaik, C. P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, I., et al. (2003). Orangutan cultures and the evolution of material culture. Science, 299, 102–105.

    PubMed  Google Scholar 

  • Waser, P. M. (1987). Interactions among primate species. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 210–226). Chicago: University of Chicago Press.

    Google Scholar 

  • Watts, D. P. (1984). Composition and variability of mountain gorilla diets in the central Virungas. American Journal of Primatology, 7, 323–356.

    Google Scholar 

  • Watts, D. P. (1998). Seasonality in the ecology and life histories of mountain gorillas (Gorilla gorilla beringei). International Journal of Primatology, 19, 929–948.

    Google Scholar 

  • Watts, D. P., & Mitani, J. C. (2002). Hunting behavior of chimpanzees at Ngogo, Kibale National Park, Uganda. International Journal of Primatology, 23, 1–28.

    Google Scholar 

  • White, F. J. (1998). Seasonality and socioecology: The importance of variation in fruit abundance to bonobo sociality. International Journal of Primatology, 19, 1013–1027.

    Google Scholar 

  • Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., et al. (1999). Cultures in chimpanzees. Nature, 399, 682–685.

    PubMed  CAS  Google Scholar 

  • Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour, 75, 262–300.

    Google Scholar 

  • Wrangham, R. W. (1986). Ecology and social relationships in two species of chimpanzee. In D. I. Rubenstein & R. W. Wrangham (Eds.), Ecology and social evolution: Birds and mammals (pp. 352–378). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and Cercopithecines to seasonal variation in fruit abundance: I. Antifeedants. International Journal of Primatology, 19, 949–970.

    Google Scholar 

  • Yamagiwa, J. (2004). Diet and foraging of the great apes: Ecological constraints on their social organizations and implications for their divergence. In A. E. Russon & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 210–233). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Yamakoshi, G. (1998). Dietary responses to fruit scarcity of wild chimpanzees at Bossou, Guinea: Possible implications for ecological importance of tool use. American Journal of Physical Anthropology, 106, 283–295.

    PubMed  CAS  Google Scholar 

  • Yamakoshi, G. (2004a). Food seasonality and socioecology in Pan: Are West African chimpanzees another bonobo? African Study Monographs, 25, 45–60.

    Google Scholar 

  • Yamakoshi, G. (2004b). Evolution of complex feeding techniques in primates: Is this the origin of great ape intelligence? In A. E. Russon & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 140–171). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Yamashita, N. (1998). Functional dental correlates of food properties in five Malagasy lemur species. American Journal of Physical Anthropology, 106, 169–188.

    PubMed  CAS  Google Scholar 

  • Yeager, C. P. (1989). Feeding ecology of the proboscis monkey (Nasalis larvatus). International Journal of Primatology, 10, 497–530.

    Google Scholar 

  • Yeager, C. P., & Kool, K. (2000). The behavioral ecology of Asian colobines. In P. F. Whitehead & C. J. Jolly (Eds.), Old world monkeys (pp. 496–521). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

Our thinking about the issues discussed here benefited substantially from numerous productive discussions with Mark Leighton, and we thank him for his input. We also thank Herman Pontzer, David Pilbeam, and 3 anonymous reviewers for helpful comments and discussion. A. J. Marshall gratefully acknowledges Conservation International and The Arnold Arboretum of Harvard University for postdoctoral support. Some of the concepts considered in this article are cogently discussed in a new book by Brockman and van Schaik (2005) that was published as this article was in its final stages of revision. Readers are encouraged to consult this volume (especially Hemingway and Bynum 2005; Knott 2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, A.J., Wrangham, R.W. Evolutionary Consequences of Fallback Foods. Int J Primatol 28, 1219–1235 (2007). https://doi.org/10.1007/s10764-007-9218-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-007-9218-5

Keywords

Navigation