Skip to main content
Log in

Design of a 300 GHz Relativistic Gyrotron with an output Power of more Than 7 MW

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Calculations are presented for an electron-optical system that makes it possible to produce a helical electron beam with an energy of 250 keV, a current of 100 A, and a pitch factor of 1.1 for a 0.3 THz gyrotron with the operating mode of TE33.2. Based on averaged stationary equations with a non-fixed field structure, the cavity profile is optimized and the possibility of obtaining an output power of about 8 MW with an electronic efficiency of more than 30% is demonstrated. Within the framework of particle-in-cell three-dimensional simulation, the processes of establishing oscillations are considered. Besides, it is shown that in the range of magnetic fields from 14.7 to 15.1 T, selective excitation of oscillations in the operating mode with a maximum power of about 7 MW is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. J. Wang, G. Wang, D. Wang, S. Li, P. Zeng, “A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam,” Sci. Rep. 8, 6978 (2018). https://doi.org/10.1038/s41598-018-25466-w.

    Article  Google Scholar 

  2. S. Li, J. Wang, D. Wang, “Relativistic Surface Wave Oscillator in Y-Band with Large Oversized Structures Modulated by Dual Reflectors,” Sci. Rep. 10, 336 (2020). https://doi.org/10.1038/s41598-019-55525-9.

    Article  Google Scholar 

  3. A. Malkin, N. Ginzburg, V. Zaslavsky, I. Zheleznov, A. Sergeev, “Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures,” Electronics 11 (9), 1197 (2022). https://doi.org/10.3390/electronics11081197.

    Article  Google Scholar 

  4. N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, and V. Yu. Zaslavsky, “Quasi-optical theory of relativistic submillimeter surface-wave oscillators,” Appl. Phys. Lett. 99, 121505 (2011). https://doi.org/10.1063/1.3641868.

    Article  Google Scholar 

  5. A. J. MacLachlan, C. W. Robertson, A. W. Cross and A. D. R. Phelps, "Efficient, 0.35-THz Overmoded Oscillator Based on a Two-Dimensional Periodic Surface Lattice," IEEE Trans. Electron Dev. 69, 6342 (2022), https://doi.org/10.1109/TED.2022.3209142.

    Article  Google Scholar 

  6. R. Xiao and K. Chen, "Efficiency Improvement Studies of Sub-Terahertz Multiwave Cherenkov Generator With a Coaxial Coupler," IEEE Trans. Electron Dev. 70, 4401 (2023), https://doi.org/10.1109/TED.2023.3285726.

    Article  Google Scholar 

  7. N.S. Ginzburg, A.M. Malkin, I.V. Zheleznov, A.S. Sergeev, E.R. Kocharovskaya, “Amplification of short-wave radiation based on the resistive instability of a relativistic electron beam (Quasi-optical theory),” Tech. Phys. 62, 1242 (2017), https://doi.org/10.1134/S1063784217080114

    Article  Google Scholar 

  8. M. Thumm, "State-of-the-art of high-power gyro-devices and free electron masers," J Infrared Milli Terahz Waves 41, 1 (2020), https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  9. T. Kariya, R. Minami, T. Imai, M. Okada, F. Motoyoshi, T. Numakura, Y. Nakashima, H. Idei, T. Onchi, K. Hanada, “Development of high power gyrotrons for advanced fusion devices,” Nucl. Fusion 59, 066009 (2019), https://doi.org/10.1088/1741-4326/ab0e2c

    Article  Google Scholar 

  10. M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C.A. Romero-Talamas, R. Pu, “A 670GHz gyrotron with record power and efficiency,” Appl. Phys. Lett. 101, 153503 (2012); https://doi.org/10.1063/1.4757290

    Article  Google Scholar 

  11. N. A. Zavol’sky, V. E. Zapevalov, and M. A. Moiseev, “Numerical modeling of the processes of electron-wave interaction in the cavities of high-power gyrotrons with a frequency of 300 GHz,” Radiophys Quantum El 64, 175 (2021), https://doi.org/10.1007/s11141-021-10121-8.

    Article  Google Scholar 

  12. D. Mondal, S. Yuvaraj, M. Rawat, M. K. A. Thumm and M. V. Kartikeyan, "Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron," IEEE Trans. Electron Dev. 69, 1442 (2022), https://doi.org/10.1109/TED.2022.3146101.

    Article  Google Scholar 

  13. V. L. Bakunin, G. G. Denisov and Y. V. Novozhilova, "Principal Enhancement of THz-Range Gyrotron Parameters Using Injection Locking," IEEE Electron Device Letters 41, 777 (2020), https://doi.org/10.1109/LED.2020.2980218.

    Article  Google Scholar 

  14. R. M. Rozental, Y. Y. Danilov, A. N. Leontyev, A. M. Malkin, D. Y. Shchegolkov and V. P. Tarakanov, "Spatial Synchronization of TE-Modes in a Slit-Type Gyrotron Cavity," IEEE Trans. Electron Dev. 69, 1451 (2022), https://doi.org/10.1109/TED.2022.3146218.

    Article  Google Scholar 

  15. N. S. Ginzburg, A.M. Malkin, N.Yu. Peskov, A. S. Sergeev, V.Yu. Zaslavsky, and I.V. Zotova, “Powerful terahertz free electron lasers with hybrid Bragg reflectors,” Phys. Rev. Special Topics-Accelerators and Beams 14(4), 042001 (2011), https://doi.org/10.1103/PhysRevSTAB.14.042001.

  16. N.Yu. Peskov, A.V. Arzhannikov, V.I. Belousov, N.S. Ginzburg, V.Yu. Zaslavsky, D.A. Nikiforov, Yu.S. Oparina, A.V. Savilov, E.S. Sandalov, S.L. Sinitsky, D.I. Sobolev , “Electrodynamic System of a Powerful THz Band Free Electron Laser Based on the LIU Linear Induction Accelerator: Modeling and Cold Tests,” Bull. Russ. Acad. Sci. Phys. 87, 669 (2023), https://doi.org/10.3103/S1062873822701842.

    Article  Google Scholar 

  17. Yu.S. Oparina, N.Yu. Peskov, A.V. Savilov, D.Yu. Schegolkov, “Excitation of High-Q Talbot-Type Supermodes in Oversized Cavities of High-Power Electron Masers,” Radiophys Quantum El 65, 170 (2022), https://doi.org/10.1007/s11141-023-10203-9.

    Article  Google Scholar 

  18. M.K.A. Thumm, G.G. Denisov, K. Sakamoto and M.Q. Tran, “High-power gyrotrons for electron cyclotron heating and current drive,” Nucl. Fusion 59, 073001 (2019), https://doi.org/10.1088/1741-4326/ab2005.

    Article  Google Scholar 

  19. A.V. Sidorov, “Terahertz gas discharge: current progress and possible applications,” J. Phys. D: Appl. Phys. 55, 293001 (2022), https://doi.org/10.1088/1361-6463/ac5556.

    Article  Google Scholar 

  20. A.V. Sidorov, M.Yu. Glyavin, A.G. Luchinin, S.V. Razin, A.V. Vodopyanov, “THz gas discharge in nitrogen as a source of ultraviolet radiation,” Journal of Physics: Conference Series 1697, 012213 (2020), https://doi.org/10.1088/1742-6596/1697/1/012213.

    Article  Google Scholar 

  21. E. B. Abubakirov, A.V. Chirkov, G.G. Denisov, Yu.M. Guznov, S.Yu. Kornishin, A.N. Leontyev, O.P. Plankin, R.M. Rozental, A.S. Sedov, E.S. Semenov, V.P. Tarakanov, N.A. Zavolsky, S.A. Zapevalov, V.E. Zapevalov, "W-Band 5 MW Pulse Relativistic Gyrotron," IEEE Trans. Electron Dev. 64, 1865 (2017), https://doi.org/10.1109/TED.2017.2664106..

    Article  Google Scholar 

  22. V. E. Zapevalov, V. K. Lygin, O. V. Malygin, M. A. Moiseev, V. I. Khizhnyak, V. P. Karpov, E. M. Tai, T. Idehara, S. Mitsudo, I. Ogawa, T. Saito, “High-power oscillator of continuous electromagnetic radiation with a frequency of 300 GHz,” Radiophys Quantum El 50, 420 (2007). https://doi.org/10.1007/s11141-007-0039-3.

    Article  Google Scholar 

  23. N.I. Zaitsev, N.S. Ginzburg, E.V. Ilyakov, I.S. Kulagin, V.K. Lygin, V.N. Manuilov, M.A. Moiseev, R.M. Rosenthal, V.E. Zapevalov, N.A. Zavolsky, "X-band high-efficiency relativistic gyrotron," IEEE Trans. Plasma Sci. 30, 840 (2002), https://doi.org/10.1109/TPS.2002.801555.

    Article  Google Scholar 

  24. W. Lawson, J. Cheng, J. P. Calame, M. Castle, B. Hogan, V. L. Granatstein, M. Reiser, and G. P. Saraph, “High-Power Operation of a Three-Cavity X-Band Coaxial Gyroklystron,” Phys. Rev. Lett. 81, 3030 (1998), https://doi.org/10.1103/PhysRevLett.81.3030.

    Article  Google Scholar 

  25. Z. Liu, H. Huang, S. Li, Y. Miao, X. Jin, K. He, L. Sun, "Stable Operation of a Repetitively Pulsed X-Band Gigawatt Long Pulse Coaxial Multi-Beam Relativistic Klystron Amplifier," IEEE Electron Device Letters 43, 2177 (2022), https://doi.org/10.1109/LED.2022.3216464.

    Article  Google Scholar 

  26. Z. Liu, H. Huang, X. Jin, S. Li, T. Wang and X. Fang, "Investigation of an X -Band Long Pulse High-Power High-Gain Coaxial Multibeam Relativistic Klystron Amplifier," IEEE Trans. Electron Dev. 66, 722 (2019), https://doi.org/10.1109/TED.2018.2879193.

    Article  Google Scholar 

  27. N. I. Zaitsev, N. A. Zavolsky, V. E. Zapevalov, E. V. Ilyakov, I. S. Kulagin, V. K. Lygin, M. A. Moiseev, V. E. Nechaev, M. I. Petelin, R. M. Rozental, “Ten-Megawatt Pulsed Gyrotron with a 1-cm Wavelength and a 50% Efficiency,” Radiophys Quantum El 46, 816 (2003), https://doi.org/10.1023/B:RAQE.0000026876.36736.0e.

    Article  Google Scholar 

  28. M. A. LaPointe, J. L. Hirshfield, E. V. Kozyrev, O. A. Nezhevenko, S. V. Shchelkunov and V. P. Yakovlev, "34 GHz Magnicon for a Ka-band Test Facility," 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, China, 2006, pp. 127–127 (2006), https://doi.org/10.1109/ICIMW.2006.368335.

  29. W. M. Black, S. H. Gold, A. W. Fliflet, D. A. Kirkpatrick, W. M. Manheimer, R. C. Lee, V. L. Granatstein, D. L. Hardesty, A. K. Kinkead, and M. Sucy, “Megavolt, multikiloamp Ka-band gyrotron oscillator experiment,” Physics of Fluids B: Plasma Physics 2, 193 (1990); https://doi.org/10.1063/1.859527.

    Article  Google Scholar 

  30. S. Li, H. Huang, Z. Duan, B.N. Basu, Z. Liu, H. He, Z. Wang, "Demonstration of a Ka-Band Oversized Coaxial Multi-Beam Relativistic Klystron Amplifier for High Power Millimeter-Wave Radiation," in IEEE Electron Device Letters 43, 131 (2022), https://doi.org/10.1109/LED.2021.3130170.

    Article  Google Scholar 

  31. T. J. Orzechowski, B. R. Anderson, J. C. Clark, W. M. Fawley, A. C. Paul, D. Prosnitz, E. T. Scharlemann, S. M. Yarema, D. B. Hopkins, A. M. Sessler, and J. S. Wurtele, “High-Efficiency Extraction of Microwave Radiation from a Tapered-Wiggler Free-Electron Laser,” Phys. Rev. Lett. 57, 2172 (1986), https://doi.org/10.1103/PhysRevLett.57.2172.

    Article  Google Scholar 

  32. M.A. Agafonov, A.V. Arzhannikov, N.S. Ginzburg, V.G. Ivanenko, P.V. Kalinin, S.A. Kuznetsov, N.Y. Peskov, S.L. Sinitsky, "Generation of hundred joules pulses at 4-mm wavelength by FEM with sheet electron beam," IEEE Trans. Plasma Sci. 26, 531 (1998), https://doi.org/10.1109/27.700787.

    Article  Google Scholar 

  33. E. V. Ilyakov, G. S. Korablyov, I. S. Kulagin and N. I. Zaitsev, "Relativistic carcinotron with a thermionic injector of electrons," IEEE Trans. Plasma Sci. 26, 332 (1998), https://doi.org/10.1109/27.700762.

    Article  Google Scholar 

  34. G. G. Denisov, M. Yu. Glyavin, A. P. Fokin, A. N. Kuftin, A. I. Tsvetkov, A. S. Sedov, E. A. Soluyanova, M. I. Bakulin, E. V. Sokolov, E. M. Tai, M. V. Morozkin, M. D. Proyavin, and V. E. Zapevalov, “First experimental tests of powerful 250 GHz gyrotron for future fusion research and collective Thomson scattering diagnostics,” Review of Scientific Instruments 89, 084702 (2018); https://doi.org/10.1063/1.5040242.

    Article  Google Scholar 

  35. T. Saito, S. Tanaka, R. Shinbayashi, Y. Tatematsu, Y. Yamaguchi, M. Fukunari, S. Kubo, T. Shimozuma, K. Tanaka, M. Nishiura, “Oscillation Characteristics of a High Power 300 GHz Band Pulsed Gyrotron for Use in Collective Thomson Scattering Diagnostics,” Plasma and Fusion Research 14, 1406104 (2019), https://doi.org/10.1585/pfr.14.1406104.

    Article  Google Scholar 

  36. V.L. Bratman, A.E. Fedotov, Yu. K. Kalynov, V.N. Manuilov, “Electron-Optical System of the Gyrotron Designed for Operation in the DNP-NMR Spectrometer Cryomagnet (“Gyrotrino”),” J Infrared Milli Terahz Waves 38, 92 (2017), https://doi.org/10.1007/s10762-017-0399-5.

    Article  Google Scholar 

  37. M. Glyavin, V. Manuilov, E. Taradaev, G. Sominskii, A. Fokin, A. Sedov, “Design of a pulsed 0.5 THz gyrotron and preliminary test of its electron gun with field emitter,” Infrared Physics and Technology 111, 103480 (2020), https://doi.org/10.1016/j.infrared.2020.103480.

    Article  Google Scholar 

  38. F.H. Li, C.H. Du, Z.W. Zhang, S.Q. Li, Z.C. Gao, J.F. Zhu, G.W. Ma, Q.L. Huang, H.G. Ma, L. Zhang, A.W. Cross, P.-K. Liu, "Development of a Magnetic Cusp Gun for a 1-THz Harmonic Gyrotron," IEEE Trans. Electron Dev. 68, 6505 (2021), https://doi.org/10.1109/TED.2021.3120699.

    Article  Google Scholar 

  39. V.K. Lygin, "Numerical simulation of intense helical electron beams with the calculation of the velocity distribution functions," Int J Infrared Milli Waves 16, 363 (1995), https://doi.org/10.1007/BF02096323.

    Article  Google Scholar 

  40. L.A. Vainshtein. Open resonators and open waveguides. – Golem Press, 1969.

  41. Yu. V. Bykov, A. L. Gol'denberg, L. V. Nikolaev, M. M. Ofitserov, M. I. Petelin, “Experimental investigation of a gyrotron with whispering-gallery modes,” Radiophys Quantum El 18, 1141 (1975), https://doi.org/10.1007/BF01040346.

    Article  Google Scholar 

  42. A.V. Gaponov, V.A. Flyagin, A.L. Goldenberg, G.S. Nusinovich, Sh.E. Tsimring, V.G. Usov, S.N. Vlasov, “Powerful millimetre-wave gyrotrons,” Int. J. Electron. 51, 277 (1981), https://doi.org/10.1080/00207218108901338.

    Article  Google Scholar 

  43. K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, T. Kariya, K. Hayashi, Y. Mitsunaka, “Major Improvement of Gyrotron Efficiency with Beam Energy Recovery,” Phys. Rev. Lett. 74, 3532 (1994), https://doi.org/10.1103/PhysRevLett.73.3532.

    Article  Google Scholar 

  44. J.M. Neilson, K. Felch, T.S. Chu, J. Feinstein, C. Hess, H.E. Huey, H.R. Jory, Y.M. Mizuhara, R. Schumacher, "Design and tests of a gyrotron with a radially-extracted electron beam," IEEE Trans. Plasma Sci. 23, 470 (1995), https://doi.org/10.1109/27.402342.

    Article  Google Scholar 

  45. G. S. Nusinovich, "Review of the theory of mode interaction in gyrodevices," IEEE Trans. Plasma Sci. 27, 313 (1999), https://doi.org/10.1109/27.772257.

    Article  Google Scholar 

  46. O. Dumbrajs, T. Saito, and Y. Tatematsu , “Start-up scenario of a high-power pulsed gyrotron for 300 GHz band collective Thomson scattering diagnostics in the large helical device,” Phys. Plasmas 23, 023106 (2016); https://doi.org/10.1063/1.4941703.

    Article  Google Scholar 

  47. E. Semenov, V. Zapevalov, A. Zuev, “Methods for Simulation the Nonlinear Dynamics of Gyrotrons,” In: Balandin, D., Barkalov, K., Gergel, V., Meyerov, I. (eds) Mathematical Modeling and Supercomputer Technologies. MMST 2020. Communications in Computer and Information Science, vol 1413 (2021). Springer, Cham, https://doi.org/10.1007/978-3-030-78759-2_4.

    Chapter  Google Scholar 

  48. V.E. Zapevalov, A.S. Zuev, V.V. Parshin, E. S. Semenov, E. A. Serov, "Reduction of Ohmic Losses in the Cavities of Low-Power Terahertz Gyrotrons," Radiophys Quantum El 64, 240 (2021), https://doi.org/10.1007/s11141-021-10127-2.

    Article  Google Scholar 

  49. M.Yu. Glyavin, V.E. Zapevalov, A.N. Kuftin, “Mode competition in nonstationary regimes of high-power gyrotrons,” Radiophys Quantum El 41, 542 (1998), https://doi.org/10.1007/BF02676688.

    Article  Google Scholar 

  50. M.A. Moiseev, L.L. Nemirovskaya, V.E. Zapevalov, N.A. Zavolsky, "Numerical simulation of mode interaction in 170 GHz/1 MW gyrotrons for ITER," Int J Infrared Milli Waves 18, 2117 (1997), https://doi.org/10.1007/BF02678254.

    Article  Google Scholar 

  51. V. P. Tarakanov, “Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc,” Proc. EPJ Web Conf. 149, 04024 (2017), https://doi.org/10.1051/epjconf/20171490.

    Article  Google Scholar 

  52. C. An, D. Zhang, J. Zhang, S. Li and J. Liu, "Design of a Low-Voltage High-Efficiency 250 GHz Gyrotron," 2018 Asia-Pacific Microwave Conference (APMC), pp. 1079–1081 (2018) https://doi.org/10.23919/APMC.2018.8617302.

  53. M. Lin and D. N. Smithe, "Study on beam wave interaction and mode competition in a fusion gyrotron using 3-D EM PIC simulation," 2019 International Vacuum Electronics Conference (IVEC), 2019, pp. 1-2, https://doi.org/10.1109/IVEC.2019.8745190.

    Article  Google Scholar 

  54. I. Bandurkin, A. Fedotov, M. Glyavin, T. Idehara, A. Malkin, V. Manuilov, A. Sergeev, A. Tsvetkov, V. Zaslavsky, I. Zotova, "Development of Third-Harmonic 1.2-THz Gyrotron With Intentionally Increased Velocity Spread of Electrons," IEEE Trans. Electron Dev. 67, 4432 (2020), https://doi.org/10.1109/TED.2020.3012524.

    Article  Google Scholar 

  55. R. M. Rozental, V. P. Tarakanov, "Potential for Acceleration of Simulation of Dynamic Processes in Oversized Gyrotrons by Means of Using 2.5D Particle‑in‑Cell Method," J Infrared Milli Terahz Waves 43, 479 (2022), https://doi.org/10.1007/s10762-022-00862-6.

    Article  Google Scholar 

  56. R. M. Rozental, I. V. Zotova, N. S. Ginzburg, A. S. Sergeev, V. P. Tarakanov, “Generation of Electromagnetic Rogue-Waves in Submillimeter-Band Gyrotrons,” J Infrared Milli Terahz Waves 40, 150 (2019), https://doi.org/10.1007/s10762-018-0561-8

    Article  Google Scholar 

  57. J. Huang, T. Song, P. Liang, X. Qi, D. Ran, C. Zhang, Z. Yan, Z. Wu, K. Zhang, T. Zhao, M. Hu, Y. Wei, Y. Gong, W. Wang, D. Liu, "Detailed Investigation on Nonstationary Behavior in a Frequency-Tunable Gyrotron," IEEE Trans. Electron Dev. 69, 3400 (2022), https://doi.org/10.1109/TED.2022.3169111.

    Article  Google Scholar 

  58. M.A. Moiseev, G.S. Nusinovich, “Concerning the theory of multimode oscillation in a gyromonotron,” Radiophys Quantum El 17, 1305 (1974), https://doi.org/10.1007/BF01042032.

    Article  Google Scholar 

  59. N.I. Zaitsev, S.A. Zapevalov, E.V. Ilyakov, S.Y. Kornishin, S.V. Kofanov, M.Y. Kryltsov, I.S. Kulagin, V.K. Lygin, A.V. Malygin, V.N. Manuilov, B.Z. Movshevich, “500 keV, 200 A microsecond electron accelerator with a repetition rate of 10 Hz,” Proceedings of RuPAC 2008, Zvenigorod, Russia, pp. 339–341 (2008). https://accelconf.web.cern.ch/r08/papers/THBPH09.pdf.

  60. R.M. Rozental, Y.Y. Danilov, A.N. Leontyev, A.M. Malkin, D.Y. Shchegolkov, V.P. Tarakanov. “Double-Layer Slit Cavities for Wideband Frequency Tuning in Terahertz Gyrotrons,” J Infrared Milli Terahz Waves 43, 654 (2022), https://doi.org/10.1007/s10762-022-00876-0.

    Article  Google Scholar 

  61. V.K. Lygin, Sh.E. Tsimring, “Electron trajectories in helical beams formed by axisymmetric magnetron-injector guns,” Soviet Physics Technical Physics 18, 1067 (1974). (DOI is not available)

  62. P.V. Krivosheev, V.K. Lygin, V.N. Manuilov, Sh.E. Tsimring, “Numerical Simulation Models of Forming Systems of Intense Gyrotron Helical Electron Beams,” Int. J. Infrared and Millimeter Waves 22, 1119 (2001), https://doi.org/10.1023/A:1015006230396

    Article  Google Scholar 

  63. S.E. Tsimring. Electron Beams and Microwave Vacuum Electronics. – John Wiley & Sons, 2007, https://doi.org/10.1002/0470053763.

  64. E.S. Semenov, A.D. Yunakovsky, “Calculation of the static magnetic field of a system of solenoids,” Radiophys Quantum El 53, 717 (2011), https://doi.org/10.1007/s11141-011-9264-x

    Article  Google Scholar 

Download references

Funding

This work was supported by the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS) Projects FFUF-2022–0007.

Author information

Authors and Affiliations

Authors

Contributions

A.N. Leontiev: investigation and formal analysis;

O.P. Plankin: investigation and formal analysis;

R.M. Rozental: conceptualization, methodology, writing — original draft, review and editing;

E.S. Semenov: software and formal analysis.

Corresponding author

Correspondence to R. M. Rozental.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The ANGEL (ANalyzer of a Gyrating Electrons) software package was developed on the basis of well-established algorithms for the analysis of the electron-optical systems based on the methods of current tubes and discrete sources [61, 62].

Numerical simulation of helical electron beams is carried out by means of an approximate solution of the system of the equations of motion in a cylindrical coordinate system (r,φ,z), assuming the axial symmetry of the system (\({\partial \mathord{\left/ {\vphantom {\partial {\partial \varphi }}} \right. \kern-0pt} {\partial \varphi }} = 0\)):

$$\frac{\partial (\gamma \bf{v})}{\partial t}=\eta \left(\bf{E}+\bf{v}\times \bf{B}\right),\hspace{1em}\frac{\partial \bf{r}}{\partial t}=\bf{v},\hspace{1em}\bf{r}\left|{}_{t=0}\right.={\bf{r}}_{\hspace{0.05em}0}\hspace{1em}\bf{v}\left|{}_{t=0}\right.={\bf{v}}_{0},$$
(A1)

where r, v are the vector of the coordinate and velocity of the particles, r0, v0 are their initial values. In turn, the electric field E is calculated based on the Poisson equation in combination with the continuity equation [63]:

$$\bf{E}=-\nabla U,\hspace{0.33em}\frac{{\partial }^{2}U}{\partial {r}^{2}}+\frac{1}{r}\frac{\partial U}{\partial r}+\frac{{\partial }^{2}U}{\partial {z}^{2}}=-\rho ,\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}U\left|{}_{Boundary}\right.={U}_{B},\hspace{0.33em}{\left.\frac{\partial U}{\partial r}\right|}_{r=0}=0,\hspace{0.33em}\hspace{0.33em}\text{div }\bf{j}=0,$$
(A2)

where v is the electron velocity, η is the specific particle charge, γ is the relativistic gamma factor, ρ and j = ρv are the space charge density and electron beam current density, respectively. The potential UB at the boundary corresponds to the potential of the EOS electrodes.

The trajectory analysis of the electron flow is performed by the current tubes method, and the solution of the system of self-consistent equations is carried out by the method of successive iterations. At the initial (zero) iteration, the space charge density is assumed to be zero and the solution of the Laplace equation is found under given boundary conditions. The flow of particles emitted from the emitter is divided into N current tubes (i.e. each of them carries the current Ik, k = 1..N, which remains during the movement). The space charge introduced by k-th tube into one cell of the grid is Qm,k = Ikt, where ∆t is the time spent by the particle within the cell, the total charge of the cell Qm is obtained by summing the charges Qm,k over all current tubes that have passed through the given cell. Integration of the equations of motion allows to determine the trajectories of each current tube and the distribution of the space charge density. At the next iterations, the electric field is found from the solution of the Poisson equation with the density ρ calculated at the previous iteration, and then the electronic trajectories are calculated again.

The magnetic field is assumed to be external, its induction B is created by a system of solenoids with a rectangular longitudinal section. The magnetic induction of an azimuthally symmetric solenoid bounded by longitudinal coordinates zz2 and radial coordinates r1 < r2 is determined by the azimuthal component of the vector potential A:

$${B}_{r}=-\frac{\partial {A}_{\varphi }}{\partial z},{\hspace{0.33em}}{B}_{z}=\frac{\partial {A}_{\varphi }}{\partial r}+\frac{{A}_{\varphi }}{r},{A}_{\varphi }\left(z,r\right)=\underset{0}{\overset{\pi }{\int }}\underset{{r}_{1}}{\overset{{r}_{2}}{\int }}\underset{{z}_{1}}{\overset{{z}_{2}}{\int }}\frac{\widetilde{r}{\text{cos}}\varphi }{\sqrt{{\left(\widetilde{z}-z\right)}^{2}+{\widetilde{r}}^{2}+{r}^{2}-2r{\hspace{0.05em}}\widetilde{r}{\text{cos}}\varphi }}d\varphi d\widetilde{r}d\widetilde{z}$$
(A3)

The field calculation is optimized by analytical calculation of integrals over the radial and longitudinal coordinates, which significantly increases the accuracy and speed of calculation [64].

The calculation of the electric field is carried out by the method of discrete sources, the use of which is effective due to the small volume occupied by the electron flow relative to the total volume of the interelectrode space. The essence of the method is reduced to the representation of the scalar potential U by a linear combination of discrete sources – «virtual charges» Qi, located along the boundary at points (ρi,ζi), spaced from the surface of the electrodes «into» the metal at a distance of the order of a step:

$$\begin{gathered} U = \sum\limits_{i = 1}^{N} {Q_{i} G\left( {r,z,\rho_{i} ,\zeta_{i} } \right)} + U_{S} ,\;G\left( {r,z,\rho_{i} ,\zeta_{i} } \right) = \frac{1}{{2\pi^{2} \varepsilon_{0} }}\frac{{{\kern 1pt} F(k)}}{\sqrt \chi }, \hfill \\ k^{2} = \frac{{4r\rho_{i} }}{\chi },\;\chi = (r + \rho_{i} )^{2} + (z - \zeta_{i} )^{2} ,\;F(k) = \int\limits_{0}^{{{\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} {\frac{d\beta }{{\sqrt {1 - k^{2} \sin^{2} \beta } }}} , \hfill \\ \end{gathered}$$
(A4)

where Us is the potential generated by the space charge of the beam at the previous iteration. At the zero iteration, Us = 0 is assumed, and at subsequent iterations, it is found using the following formula:

$${U}_{s}=\sum_{m=1}^{M}{Q}_{m}G\left(r,z,{\rho }_{m},{\zeta }_{m}\right),$$
(A5)

with the same Green’s function G as when finding the potential at the boundary, M is the total number of grid cells to consider the space charge of the electron beam.

The values of the auxiliary charges Qi are found from the system of linear algebraic equations obtained by checking the boundary condition (the potential is equal to the given UB) at several discrete points of the boundary, located with a certain step on the surface of the electrodes and called collocation points:

$$\sum\limits_{i = 1}^{N} {Q_{i} G\left( {r_{j} ,z_{j} ,\rho_{i} ,\zeta_{i} } \right) = U_{B} \left( {r_{j} ,z_{j} } \right)} - U_{S} \left( {r_{j} ,z_{j} } \right),\;\;j = 1..N.$$
(A6)

The derivatives of the potential with respect to directions are taken analytically. To optimize the calculating time, a grid of "enlarged charges" is used. To integrate the equation of motion, the 4th order Runge–Kutta method is used i.e. usual and with a modification of Merson, which makes it possible to control the accuracy at each step.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontyev, A.N., Plankin, O.P., Rozental, R.M. et al. Design of a 300 GHz Relativistic Gyrotron with an output Power of more Than 7 MW. J Infrared Milli Terahz Waves 44, 998–1015 (2023). https://doi.org/10.1007/s10762-023-00950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-023-00950-1

Keywords

Navigation