Skip to main content
Log in

Development of Gyrotron FU CW GVII: a Second Harmonic, Multifrequency Gyrotron that Radiates Gaussian Beams

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A sub-THz, second harmonic, multifrequency gyrotron, Gyrotron FU CW GVII, which radiates Gaussian beams, was developed. This device was designed to change the frequency in a stepwise manner in the range from 270 to 420 GHz. In this paper, we present the first experiments conducted using this gyrotron. Nine modes were selected for this study. The oscillation frequency of the selected modes was measured using a heterodyne system. The profiles of the Gaussian beams converted from the modes were assessed using an infrared camera, and the power of these beams was measured using a power meter. The oscillations of the nine second harmonic modes were successfully measured, and Gaussian beams converted from seven oscillation modes were observed. Four second harmonic modes, TE8,5, TE6,5, TE5,4, and TE2,6, oscillated in a single mode. The power of the beams ranged from 0.2 to 77 W. Even in the case of spurious oscillation of fundamental modes, the beams converted from the second harmonic modes could be separated from the fundamental mode beams by taking advantage of the different radiation directions emitted through the gyrotron window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Braz, G. Dammertz, M. Kuntze, M. Thumm, Int. J. Infrared Millim. Waves 18, 1465 (1997)

    Google Scholar 

  2. G. Dammertz, O. Dumbrajs, K. Koppenburg, B. Piosczyk, M. Thumm, J. Commun. Technol. Electron. 45, S60 (2000)

    Google Scholar 

  3. B. Piosczyk, A. Arnold, G. Dammertz, M. Kuntze, G. Michel, O.S. Lamba, M.K. Thumm, IEEE Trans. Plasma Sci. 28, 918 (2000)

    Google Scholar 

  4. M. Thumm, A. Arnold, E. Borie, O. Braz, G. Dammertz, O. Dumbrajs, K. Koppenburg, M. Kuntze, G. Michel, B. Piosczyk, Fusion Eng. Des. 53, 407 (2001)

    Google Scholar 

  5. K. Koppenburg, G. Dammertz, M. Kuntze, B. Piosczyk, M. Thumm, IEEE Tran. Electron Devices 48, 101 (2001)

    Google Scholar 

  6. O. Prinz, A. Arnold, G. Gantenbein, Y. Liu, M. Thumm, D. Wagner, IEEE Trans. Electron Devices 56, 828 (2009)

    Google Scholar 

  7. G. Gantenbein, A. Samartsev, G. Aiello, G. Dammertz, J. Jelonnek, M. Losert, A. Schlaich, T.A. Scherer, D. Strauss, M. Thumm, D. Wagner, IEEE Trans. Electron Devices 61, 1806 (2014)

    Google Scholar 

  8. A. Samartsev, K.A. Avramidis, G. Gantenbein, G. Dammertz, M. Thumm, J. Jelonnek, IEEE Trans. Electron Devices 62, 2317 (2015)

    Google Scholar 

  9. G.G. Denisov, A.G. Litvak, V.E. Myasnikov, E.M. Tai, V.E. Zapevalov, Nucl. Fusion 48, 054007 (2008)

    Google Scholar 

  10. T. Idehara, T. Tatsukawa, I. Ogawa, Y. Shimizu, S. Makino, T. Kanemaki, Phys. Fluids B 5, 1377 (1993)

    Google Scholar 

  11. K.D. Hong, G.F. Brand, T. Idehara, J. Appl. Phys. 74, 5250 (1993)

    Google Scholar 

  12. Y. Shimizu, S. Makino, K. Ichikawa, T. Kanemaki, T. Tatsukawa, T. Idehara, I. Ogawa, Phys. Plasmas 2, 2110 (1995)

    Google Scholar 

  13. T. Idehara, I. Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, K. Yoshida, IEEE Trans. Plasma Sci. 27, 340 (1999)

    Google Scholar 

  14. V.E. Zapevalov, V.K. Lygin, O.V. Malygin, M.A. Moiseev, V.I. Khizhnyak, V.P. Karpov, E.M. Tai, T. Idehara, S. Mitsudo, I. Ogawa, T. Saito, Radiophys. Quantum Electron. 50, 420 (2007)

    Google Scholar 

  15. T. Saito, T. Nakano, H. Hoshizuki, K. Sakai, Y. Tatematsu, S. Mitsudo, I. Ogawa, T. Idehara, V.E. Zapevalov, Int. J. Infrared Millim. Waves 28, 1063 (2007)

    Google Scholar 

  16. V. Bratman, M. Glyavin, T. Idehara, Y. Kalynov, A. Luchinin, V. Manuilov, S. Mitsudo, I. Ogawa, T. Saito, Y. Tatematsu, V. Zapevalov, IEEE Trans. Plasma Sci. 37, 36 (2009)

    Google Scholar 

  17. T. Idehara, S.P. Sabchevski, J. Infrared Millim. Terahertz Waves 33, 667 (2012)

    Google Scholar 

  18. Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Ozeki, R. Ikeda, T. Kanemaki, I. Ogawa, T. Saito, J. Infrared Millim. Terahertz Waves 33, 292 (2012)

    Google Scholar 

  19. Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Kawase, R. Ichioka, I. Ogawa, T. Saito, T. Fujiwara, J. Infrared Millim. Terahertz Waves 35, 169 (2014)

    Google Scholar 

  20. Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Kawase, I. Ogawa, T. Saito, T. Fujiwara, J. Infrared Millim. Terahertz Waves 35, 517 (2014)

    Google Scholar 

  21. Y. Tatematsu, Y. Yamaguchi, T. Kawase, R. Ichioka, I. Ogawa, T. Saito, T. Idehara, Phys. Plasmas 21, 083113 (2014)

    Google Scholar 

  22. T. Idehara, Y. Tatematsu, Y. Yamaguchi, E.M. Khutoryan, A.N. Kuleshov, K. Ueda, Y. Matsuki, T. Fujiwara, J. Infrared Millim. Terahertz Waves 36, 613 (2015)

    Google Scholar 

  23. Y. Tatematsu, Y. Yamaguchi, R. Ichioka, M. Kotera, T. Saito, T. Idehara, J. Infrared Millim. Terahertz Waves 36, 697 (2015)

    Google Scholar 

  24. Y. Matsuki, K. Ueda, T. Idehara, R. Ikeda, K. Kosuga, I. Ogawa, S. Nakamura, M. Toda, T. Anai, T. Fujiwara, J. Infrared Millim. Terahertz Waves 33, 745 (2012)

    Google Scholar 

  25. Y. Matsuki, K. Ueda, T. Idehara, R. Ikeda, I. Ogawa, S. Nakamura, M. Toda, T. Anai, T. Fujiwara, J. Mag. Res. 225, 1 (2012)

    Google Scholar 

  26. F. Horii, T. Idehara, Y. Fujii, I. Ogawa, A. Horii, G. Entzminger, F.D. Doty, J. Infrared Millim. Terahertz Waves 33, 756 (2012)

    Google Scholar 

  27. Y. Matsuki, T. Idehara, J. Fukazawa, T. Fujiwara, J. Mag. Res. 264, 107 (2016)

    Google Scholar 

  28. T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, I. Ogawa, T. Idehara, S. Sabchevski, Phys. Rev. Lett. 108, 253401 (2012)

    Google Scholar 

  29. A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, Y. Tatematsu, J. Infrared Millim. Terahertz. Waves 35, 91 (2014)

    Google Scholar 

  30. A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, Y. Tatematsu, I. Ogawa, T. Idehara, Prog. Theor. Exp. Phys. 2015, 011C01 (2015)

    Google Scholar 

  31. S. Mitsudo, S. Inagaki, I.N. Sudiana, K. Kuwayama, Adv. Mat. Res. 789, 279 (2013)

    Google Scholar 

  32. I.N. Sudiana, R. Ito, S. Inagaki, K. Kuwayama, K. Sako, S. Mitsudo, J. Infrared Milli. Terahertz Waves 34, 627 (2013)

    Google Scholar 

  33. K. Kato, H. Qiu, E.M. Khutoryan, Y. Tatematsu, M. Tani, T. Idehara, Y. Yamaguchi, M. Fukunari, Y. Maeda, K. Takayama, Y. Minami, M.J.F. Empizo, T. Kurihara, K. Yamanoi, T. Shimizu, K. Takano, N. Sarukura, T. Fukuda, M. Yoshimura, M. Nakajima, Appl. Phys. Lett. 111, 031108 (2017)

    Google Scholar 

  34. Y. Toda, S. Ishiyama, E. Khutoryan, T. Idehara, S. Matsuishi, P.V. Sushko, H. Hosono, ACS Nano 11, 12358 (2017)

    Google Scholar 

  35. S. Yamazaki, M. Harata, T. Idehara, K. Konagaya, G. Yokoyama, H. Hoshina, Y. Ogawa, Sci. Rep. 8, 9990 (2018)

    Google Scholar 

  36. D. Wagner, G. Grünwald, F. Leuterer, A. Manini, F. Monaco, M. Münich, H. Schütz, J. Stober, H. Zohm, T. Franke, M. Thumm, G. Gantenbein, R. Heidinger, A. Meier, W. Kasparek, C. Lechte, A. Litvak, G.G. Denisov, A.V. Chirkov, E.M. Tai, L.G. Popov, V.O. Nichiporenko, V.E. Myasnikov, E.A. Solyanova, S.A. Malygin, F. Meo, P. Woskov, Nucl. Fusion 48, 054006 (2008)

    Google Scholar 

  37. T. Kobayashi, S. Moriyama, K. Yokokura, M. Sawahata, M. Terakado, S. Hiranai, K. Wada, Y. Sato, J. Hinata, K. Hoshino, A. Isayama, Y. Oda, R. Ikeda, K. Takahashi, K. Sakamoto, Nucl. Fusion 55, 063008 (2015)

    Google Scholar 

  38. R. Ikeda, Y. Oda, T. Kobayashi, K. Kajiwara, M. Terakado, K. Takahashi, S. Moriyama, K. Sakamoto, J. Infrared Millim. Terahertz Waves 38, 531 (2017)

    Google Scholar 

  39. Y. Yamaguchi, Y. Tatematsu, Y. Maeda, K. Takayama, M. Fukunari, M. Iizawa, T. Saito, 42nd Int. Conf. Infrared Millim. Terahertz Waves, RD-43 (2017)

  40. A. Möbius, M. Thumm, in Gyrotron Oscillators, Their Principles and Practice, ed. by C.J. Edgcombe (Taylor & Francis, London, 1993), pp. 179–222

  41. M.V. Kartikeyan, E. Borie, M.K.A. Thumm, Gyrotrons, High-Power Microwave and Millimeter Wave Technology (Springer-Verlag Berlin Heidelberg, 2004), pp. 127–146

    Google Scholar 

  42. C.C. Johnson, Field and wave electrodynamics (McGraw-Hill, New York, 1965), pp. 47–69

    Google Scholar 

  43. M. Thumm, State-of-the-art of High Power Gyro-Devices and Free Electron Masers, Update 2017 (KIT Scientific Publication, Karlsruhe, 2018)

    Google Scholar 

  44. E. Borie, G. Gantenbein, B. Jödicke, G. Dammertz, O. Dumbrajs, T. Geist, G. Hochschild, M. Kuntze, H.-U. Nickel, B. Piosczyk, M. Thumm, Int. J. Electronics 72, 687 (1992)

    Google Scholar 

  45. T. Idehara, J.C. Mudiganti, L. Agusu, T. Kanemaki, I. Ogawa, T. Fujiwara, Y. Matsuki, K. Ueda, J. Infrared Millim. Terahertz Waves 33, 724 (2012)

    Google Scholar 

Download references

Acknowledgments

The lead author would like to thank Prof. Yukihisa Suzuki and Dr. Maya Mizuno for their support in the calibration of the power meter.

Funding

This work was partly supported by a special fund for research projects from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by JSPS KAKENHI (Grant Number: 17K05725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Tatematsu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatematsu, Y., Yamaguchi, Y., Fukunari, M. et al. Development of Gyrotron FU CW GVII: a Second Harmonic, Multifrequency Gyrotron that Radiates Gaussian Beams. J Infrared Milli Terahz Waves 41, 576–589 (2020). https://doi.org/10.1007/s10762-020-00681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00681-7

Keywords

Navigation