Skip to main content
Log in

A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

For high-power operation, a THz gyrotron traveling-wave-tube (gyro-TWT) amplifier must operate in a high-order waveguide mode to enlarge the transverse dimension of an interaction waveguide. However, a gyro-TWT amplifier operating in a high-order waveguide mode is susceptible to spurious oscillations. To improve the device stability, in this study, we investigate the possibility of using a coaxial waveguide with distributed losses as the interaction structure. For the same required attenuation, all threatening oscillating modes can be suppressed using different combinations of losses of inner and outer cylinders. This provides flexibility in designing distributed losses when considering the ohmic loading of the interaction structure. We predict that the 0.2-THz gyro-TWT can stably produce a peak power of 14 kW with an efficiency of 23 %, a 3-dB bandwidth of 3.5 GHz, and a saturated gain of 50 dB for a 20-kV 3-A electron beam with a 5 % velocity spread and 1.0 velocity ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, IEEE Trans. Plasma Sci. 27, 391 (1999).

    Article  Google Scholar 

  2. M. Garven, J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, IEEE Trans. Plasma Sci. 30, 885 (2002).

    Article  Google Scholar 

  3. H. H. Song, D. B. McDermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C Tsai, K. R. Chu, and N. C. Luhman, Jr., Phys. Plasmas 11, 2935 (2004).

    Article  Google Scholar 

  4. B. Liu, J. Feng, E. Wang, Z. Li, X. Zeng, L. Qian, and H. Wang, IEEE Trans. Plasma Sci. 39, 1665 (2011).

    Article  Google Scholar 

  5. E. Wang, X. Zeng, B. Liu, L. Qian, Z. Li, J. Feng, and S. Zhu, IEEE Trans. Plasma Sci. 40, 1846 (2012).

    Article  Google Scholar 

  6. R. Yan, Y. Tang, and Y. Luo, IEEE Trans. Electron Devices 61, 2564 (2014).

    Article  Google Scholar 

  7. J. R. Sirigiri, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett. 90, 258302 (2003).

    Article  Google Scholar 

  8. E. A. Nanni, S. M. Lewis, M. A. Shapiro, R. G. Griffin, and R. J. Temkin, Phys. Rev. Lett. 111, 25101 (2013).

    Article  Google Scholar 

  9. S. N. Vlasov, L. I. Zagryadskaya, and I. M. Orlova, Radio Eng. and Electron. Phys. 21, 96 (1976).

    Google Scholar 

  10. C. L. Hung and N. H. Cheng, IEEE Tran. Electron Devices 61, 1812 (2014).

    Article  Google Scholar 

  11. C. L. Hung, M. F. Syu, M. T. Yang, and K. L. Chen, Appl. Phys. Lett. 101, 033504 (2012).

    Article  Google Scholar 

  12. C. L. Hung and Y. S. Yeh, Phys. Plasmas 12, 103102 (2005).

    Article  Google Scholar 

  13. J. P. Calame, M. Garven, B. G. Danly, B. Levush, and K. T. Nguyen, IEEE Trans. Electron Devices 49, 1469 (2002).

    Article  Google Scholar 

  14. I. G. Tigelis, J. L. Vomvoridis and S. Tzima, IEEE Trans. Plasma Sci. 26, 922 (1998).

    Article  Google Scholar 

  15. C. H. Du, Q. Z. Xue, P. K. Liu, M. H. Wang, IEEE Transactions on Electron Devices 56, 839 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract MOST 103-2221-E-346-001 and MOST 104-2221-E-346-001. We are grateful to the National Center for High-performance Computing for computer time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Hung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, C.L., Yeh, Y.S., Chang, T.H. et al. A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses. J Infrared Milli Terahz Waves 38, 1–11 (2017). https://doi.org/10.1007/s10762-016-0302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0302-9

Keywords

Navigation