Skip to main content
Log in

Experimental Comparison of Terahertz and Infrared Signaling in Controlled Atmospheric Turbulence

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In order to study and compare propagation features of Terahertz (THz) and infrared (IR) links under different air turbulence conditions, THz and IR free- space communication links at 625 GHz carrier frequency and 1550 nm wavelength, respectively, with a maximum data rate of 2.5 Gb/s have been developed. After propagating through the same channel perturbation caused by air turbulence, attenuation of the channels due to scintillation effects is analyzed by measuring the power and bit-error-rates in each link. Attenuation caused by air turbulence degrades the IR channel but exhibits only minor impact on the THz signal. Numerical simulations of the IR and THz attenuation under different turbulence conditions are presented and compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Reference

  1. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).

    Article  Google Scholar 

  2. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves, 32, 143-171 (2011).

    Article  Google Scholar 

  3. J. F. Federici, L. Moeller, and K. Su, “Terahertz Wireless Communications” in Handbook of Terahertz Technology for Imaging, Sensing, and Communications, Woodhead Publishers, (2013).

  4. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H.i Takahashi. “Terahertz wireless communications based on photonics technologies.” Opt. Exp. 21, 23736-23747 (2013).

  5. I. Akyildiz, J. Jornet, C.Han. “Terahertz band: Next frontier for wireless communications.” Physical Communication 12, 16-32, (2014).

  6. K. Su, L. Moeller, R. Barat, Robert, J. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Am. A, 29, 2360-2366 (2012).

    Article  Google Scholar 

  7. K. Su, L. Moeller, R. Barat, Robert, J. Federici, “Experimental comparison of performance degradation from terahertz and infrared wireless links in fog,” J. Opt. Soc. Am. A, 29, 179-1844 (2012).

    Article  Google Scholar 

  8. L. C. Andrews and R. L. Phillips, “Laser Beam Propagation Through Random Media,” 2nd ed. Washington, DC: SPIE Press, (2005).

  9. O. M. Zaatari. “Wireless optical communications systems in enterprise networks,” Telecommunication Review, 49-57 ( 2003)

  10. G. P. Berman, A. R. Bishop, B. M. Chernobrod, D. C. Nguyen, and V. N. Gorshkov. “Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam,” Opt. Commun., 280, 2264-2270 (2007).

    Article  Google Scholar 

  11. L. Moeller, J. Federici, and K. Su, “2.5Gbit/s duobinary signaling with narrow bandwidth 0.625 terahertz source,” Electronics Letters 47, 856-858 (2011).

    Article  Google Scholar 

  12. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron.12, 544-554 (2006).

    Article  Google Scholar 

  13. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293-1300 (2002).

    Article  Google Scholar 

  14. N. Perlot, “Evaluation of the scintillation loss for optical communications systems with direct detection,” SPIE Opt. Eng.46, 025003 (2007).

    Article  Google Scholar 

  15. H. Le-Minh, Z. Ghassemlooy, M. Ijaz, S. Rajbhandari, O.Adebanjo, S. Ansari, and E. Leitgeb, “Experimental study of bit error rate of free space optics communications in laboratory controlled turbulence,” In GLOBECOM Workshops , IEEE, 1072-1076 (2010).

  16. W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” IEEE Journal of Lightwave Technology, 27, 967-973 (2009).

    Article  Google Scholar 

  17. H. Hemmati, “Near earth laser communications,” CRC Press, London, UK, (2009).

    Book  Google Scholar 

  18. O. Bouchet, “Wireless Optical Telecommunications,” Wiley, (2013).

  19. Larry C. Andrews, "Field Guide to Atmospheric Optics" SPIE, (2004).

  20. L. Bao, H. Zhao, G. Zheng, X. Ren, “Scintillation of THz transmission by atmospheric turbulence near the ground,” 2012 I.E. ICACI, 932-936 (2012).

  21. R. L. Freeman, “Radio System Design for Telecommunications”, 2nd ed. Wiley, New York, (1997).

    Google Scholar 

  22. Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, J. Perez, and M. Ijaz, “Performance analysis of ethernet/fast-ethernet free space optical communications in a controlled weak turbulence condition,” IEEE/OSA Journal of Lightwave Technology, 30, 2188–2194 (2012).

    Article  Google Scholar 

  23. L. Dordova and O. Wilfert, “Calculation and Comparison of Turbulence Attenuation by Different Methods,” Radio engineering, 19,162-167 (2010).

    Google Scholar 

  24. O. Wilfert, Z. Kolka, “Statistical model of free-space optical data link,” In Proc. of the International Symposium on Optical Science and Technology. Conference 5550. Denver: SPIE. 203-213 (2004).

  25. B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” John Wiley & Sons, New York, (1991).

    Book  Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No. ECCS-1102222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Moeller, L. & Federici, J.F. Experimental Comparison of Terahertz and Infrared Signaling in Controlled Atmospheric Turbulence. J Infrared Milli Terahz Waves 36, 130–143 (2015). https://doi.org/10.1007/s10762-014-0121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0121-9

Keywords

Navigation