Skip to main content
Log in

Improving Spatial Resolution of Real-Time Terahertz Near-Field Microscope

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz (THz) wave imaging for biomaterial samples such as cells requires real-time acquisition and high spatial resolution beyond the diffraction limit. The existing THz near-field microscopes are based on raster-scanning techniques, and are therefore not able to image and trace morphological changes in a large area. With the recent advances in high-power THz sources, we demonstrated how to achieve high spatial resolution over a large size using a conventional charge-coupled-device (CCD) camera with the electro–optic (EO) sampling technique. In this paper, we determine a limiting factor that restricts spatial resolution in our near-field microscope. By calculating the imaging performance of the probe beam together with THz wave diffraction, we show that the most relevant factor is the diffraction inside the EO crystal. Near-field imaging of metal patterns using EO crystals with different thicknesses supports this calculation. A thin EO crystal is essential for achieving THz images with high spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995).

    Article  Google Scholar 

  2. K. Kawase, Optics & Photonics News 15, 34 (2004).

    Article  Google Scholar 

  3. D. M. Mittleman, G. Gupta, B. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, Appl. Phys. B 68, 1085 (1999).

    Article  Google Scholar 

  4. X-C Zhang, Phys. Med. Biol. 47, 3667 (2002).

    Article  Google Scholar 

  5. N. C. J. van der Valk and P. C. M. Planken, Phil. Trans. R. Soc. Lond. A 362, 315 (2004).

    Article  Google Scholar 

  6. M. Tonouchi, nature photonics 1, 97, (2007).

    Article  Google Scholar 

  7. P. H. Siegel, IEEE Trans. Microwave Theory and Techniques 52, 2438 (2004).

    Article  Google Scholar 

  8. A. J. Fitzgerald, E. Berry, N. N. Zinovev, and G. C. Walker, M. A. Smith, and J. M. Chamberlain, Phys. Med. Biol. 47, R67 (2002).

    Article  Google Scholar 

  9. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2002).

  10. A. G. Markelz, A. Roitberg, and E. J. Heilweil, Chem. Phys. Lett. 320, 42 (2000).

    Article  Google Scholar 

  11. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).

    Article  Google Scholar 

  12. O. Mitrofanov, M. Lee, J.W. P. Hsu, I. Brener, R. Harel, J. F. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, IEEE J. Sel. Top. Quantum Electron. 7, 600 (2001).

    Article  Google Scholar 

  13. Q. Chen, Z. Jiang, G. X. Xu and X.-C. Zhang, Opt. Lett. 25, 1122 (2000).

    Article  Google Scholar 

  14. H.-T. Chen, R. Kersting, and G. C. Cho, Appl. Phys. Lett. 83, 3009 (2003).

    Article  Google Scholar 

  15. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, Nano Lett. 8, 3766–3770 (2008).

    Article  Google Scholar 

  16. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, Opt. Express 15, 11781 (2007).

    Article  Google Scholar 

  17. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, Opt. Express 16, 7407 (2008).

    Article  Google Scholar 

  18. X. Wang, Y. Cui, D. Hu, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 282, 4683 (2009).

    Article  Google Scholar 

  19. A. Bitzer, A. Ortner, and M. Walther, Appl. Opt. 49, E1 (2010).

    Article  Google Scholar 

  20. A. Doi, F. Blanchard, H. Hirori, and K. Tanaka, Opt. Express 18, 18419 (2010).

    Article  Google Scholar 

  21. F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, Opt. Express 19, 8277 (2011).

    Article  Google Scholar 

  22. Q. Wu, and X.-C. Zhang, Appl. Phys. Lett. 67, 3523 (1995).

    Article  Google Scholar 

  23. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, Opt. Commun. 283, 4626 (2010).

    Article  Google Scholar 

  24. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, J. Opt. Soc. Am. B 25, B6 (2008).

    Article  Google Scholar 

  25. M. Jewariya, M. Nagai, and K. Tanaka, J. Opt. Soc. Am. B 26, A101 (2009).

    Article  Google Scholar 

  26. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, Appl. Phys. Lett. 98, 091106 (2011).

    Article  Google Scholar 

  27. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).

    Google Scholar 

  28. C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, Appl. Phys. Lett. 70, 3069 (1997).

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Hideaki Tanaka and Yutaka Kadoya for creating metallic line-and-space samples and also to Mitsuru Namiki for valuable discussions. This study was supported by a Grant-in-Aid for Scientific Research from JSPS (Grant No. 21760038) and from MEXT of Japan (Grant Nos. 18GS0208 and 20104007). F. B. thanks Le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) for support provided through contract no. 138131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Doi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doi, A., Blanchard, F., Tanaka, T. et al. Improving Spatial Resolution of Real-Time Terahertz Near-Field Microscope. J Infrared Milli Terahz Waves 32, 1043–1051 (2011). https://doi.org/10.1007/s10762-011-9812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-011-9812-7

Keywords

Navigation