Skip to main content
Log in

Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review

  • Invited Review Article
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The millimeter waves (MMW) region of the electromagnetic spectrum, extending from 30 to 300 GHz in terms of frequency (corresponding to wavelengths from 10 mm to 1 mm), is officially used in non-invasive complementary medicine in many Eastern European countries against a variety of diseases such gastro duodenal ulcers, cardiovascular disorders, traumatism and tumor. On the other hand, besides technological applications in traffic and military systems, in the near future MMW will also find applications in high resolution and high-speed wireless communication technology. This has led to restoring interest in research on MMW induced biological effects. In this review emphasis has been given to the MMW-induced effects on cell membranes that are considered the major target for the interaction between MMW and biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. M.A. Rojavin, M.C. Ziskin, Medical application of millimeter waves. Q J M 91 (1998) 57-66.

    Google Scholar 

  2. V.N. Skresanov, I.V. Kas, E.A. Okhryamkina, V.P. Palamrchuck, and L. Tondy, Complex treatment cardiovascular disease with a low power millimeter-wave radiation. In Proc. IEEE 4th Int. Kharkov Symp. Phys. Eng. Microwaves, Millimeter, Submillimeter. Waves, Kharkov, Ukraine, vol.2 (2001) 939-940.

  3. A.G. Pakhomov, Y. Akyel, O.N. Pakhomova, B.E. Stuck and M.R. Murphy, Current state and implications of research on biological effects of millimeter wave. Bioelectromagnetics 19 (1998) 393-413.

    Article  Google Scholar 

  4. X.-H. Li, J.-T. Tang, Y.-P. Liao, H.-K. Jin, J.-M. Zhou, G.-H. Wang, H. Wang, Millimeter wave in the treatment of acute radiation-induced cervical skin ulcers. J. Clin. Rehab. Tissue Eng. Res. 12 (2008) 663-666.

    Google Scholar 

  5. M. Markov, Expanding use of pulsed electromagnetic field therapy. Elec. Biol. And Med., 26 (2007) 257-274.

    Article  Google Scholar 

  6. W. -D. Li, W. Wang, J.-L. Chen, Efficacy of IZL-2003 immunotherapeutic system in patients with liver cancer. World Chinese J. Digestology 17 (2009) 3553-3557.

    MathSciNet  Google Scholar 

  7. O.V. Betskii, Y.G. Yaremenko, The skin and electromagnetic waves. Millimeter Waves in Biol Med N1(11) (1998) 3-14.

    Google Scholar 

  8. T.I. Usichenko, H. Edinger, V. V. Gizhko, C. Lehmann, M. Wendt and F. Feyerherd, Low-Intensity Electromagnetic Millimeter Waves for Pain Therapy. eCAM 3 (2006) 201-207.

    Article  Google Scholar 

  9. M.C. Ziskin, Physiological mechanisms underlying millimeter wave therapy. In Bioelectromagnetics: Current Concepts NATO Science Series, S. Ayrapetyan & M. Markov Eds. Springer Press, The Netherlands, (2006) pp.241-251.

    Chapter  Google Scholar 

  10. A.G., Pakhomov, M. R., Murphy, Low-Intensity Millimeter Waves as a Novel Therapeutic Modality: non-thermal medical/biological treatments using electromagnetic waves and ionized gases. IEEE Trans Plasma Science 20 (2000) 34-40.

    Article  Google Scholar 

  11. M. Marcus, B. Pattan, Millimeter wave propagation: spectrum management implications. IEEE Microwave Mag 6 (2005) 54-63.

    Article  Google Scholar 

  12. C. Park and S. Rappaport, Short-range wireless communications for next-generation networks: UWB, 60 GHz millimetre wave WPAN, and ZigBee. IEEE Wireless Commun 14 (2007) 70-78.

    Article  Google Scholar 

  13. Proceedings of International Conference on Microwave and Millimeter Wave Technology, Ed.W. Hong, G. Yang. Nanjing, China IEEE Publisher, April 21-24, 2008. http://www.emfield.org/icmmt2008

  14. ICNIRP Guidelines “Guidelines for Limiting Exposure to Time-varying Electric, Magnetic, and Electromagnetic fields (up to 300 GHz)”. Health Physics 74 (1998) 494-522.

    Google Scholar 

  15. ICNIRP Dosimetry of high frequency electromagnetic fields (100 kHz to 300 GHz) in Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz) (Eds P.Vecchia, R. Matthes, G. Ziegelberger J. Lin, R. Saunders, A. Swerdlow) 16 (2009) 52-62.

  16. Adair, R. “Biophysical Limits on Athermal Effects of RF and Microwave Radiation” Bioelectromagnetics 24 (2003) 39-48.

    Article  Google Scholar 

  17. S. M. Motzkin, Biological effects of millimeter-wave radiation. In Biological Effects and Medical Applications of Electromagnetic Energy. Gandhi O.P. (Ed), Prentice Hall, Hanglewood Cliffs, NJ, (1990) 373.

  18. E. Postow and L. Swicord, Window effects in the millimeter-wave region, in C. Polk, E. Postow (Eds), Handbook of Biological Effects of Electromagnetic Fields CRC Press LLC, Second Edition (1996) 537-541.

  19. I. Belayev, Non-thermal Biological Effects of Microwaves, Microwave Review 11 (2005) 13-29.

    Google Scholar 

  20. A. Beneduci, Review on the mechanisms of interaction between millimeter waves and biological systems, in M.E. Bernstain (Ed), Bioelectrochemistry Research Developments, NOVAScience Publishers Inc, New York (2008) 35-80.

    Google Scholar 

  21. S.J. Webb and D.E. Dodds, Inhibition of Bacterial Cell Growth by 136 Microwaves. Nature 218 (1968) 374-375.

    Article  Google Scholar 

  22. W. Grundler, F. Keilmann, and H. Fröhlich, Resonant Growth Rat Response of Yeast Cells Irradiated by Weak Microwaves. Physics Letter A62 (1977) 463-466.

    Article  Google Scholar 

  23. H. Fröhlich, Biological coherence and response to external stimuli, Springer-Verlag Berlin, 1988, pp.1-24.

  24. P. Gos, B. Eicher, J. Kohli, and W.D. Heyer, Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells. Bioelectromagnetics 18 (1997) 142-155.

    Article  Google Scholar 

  25. G. Yu, E.A. Coln, K.H. Schoenbach, M. Gellerman, P. Fox, L. Rec, S.J. Beebe, L. Shengang, A study on biological effects of low-intensity millimeter waves. Plasma Science IEEE Trans. 30 (2002) 1489-1496.

    Article  Google Scholar 

  26. A. Beneduci, Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell Biochem. Biophys 55 (2009) 25-32.

    Article  Google Scholar 

  27. S. Hadjiloucas, M.S. Chahal and J.W. Bowen, Preliminary results on the non-thermal effects of 200–350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies. Phys. Med. Biol. 47 (2002) 3831-3841.

    Article  Google Scholar 

  28. P. Mueller, D. Ru, H. Tien, W. Wescott, Reconstitution of a cell membrane structure in vitro and its transformation into an excitable system, Nature 194 (1962) 979-980.

    Article  Google Scholar 

  29. V.M. Brovkovich, N.B. Kurilo, V.L. Barishpol, Action of millimeter-range electromagnetic radiation on the Ca pump of sarcoplasmic reticulum. Radiobiologia 31 (1991) 268-271 (in Russian)

    Google Scholar 

  30. A.A. Kataev, A.A. Alexandrov, L.L. Tikhonova, G.N. Berestovsky, Frequency dependent effects of the electromagnetic millimeter waves on the ion currents in the cell membrane of Nitellopsis: Non thermal action. Biofizika 38(1993) 446-462. (In Russian)

    Google Scholar 

  31. V.I. Geletyuk, V.N. Kazachenko, N.K. Chemeris, E.E. Fesenko, Dual effects of microwaves on single Ca2+-activated K+ channels in cultured kidney cells Vero. FEBS Letters 359 (1995) 85-88.

    Article  Google Scholar 

  32. E.E. Fesenko, V.I. Geletyuk, V.N. Kazachenko, N.K. Chemeris, Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Letters 366 (1995) 49-52.

    Article  Google Scholar 

  33. E.E. Fesenko, and A.Ya. Gluvstein, Changes in the state of water, induced by radiofrequency electromagnetic fields. FEBS Letters 367 (1995) 53-55.

    Article  Google Scholar 

  34. A.F. Cojocaru, N.L. Cojocaru and Zh.I. Burkovetsakaya, Mechanisms of water-mediated action of weak radio-frequency electromagnetic radiation on biological objects. Biophysics 50 (2005) S141-S156.

    Google Scholar 

  35. O.V. Betskii, N.D. Devyatkov, V.V. Kislov, Low intensity millimeter waves in medicine and biology. Critical Reviews™ in Biomedical Engineering 28 (2000) 247-268.

    Google Scholar 

  36. G.S. Ayrapetyan, E.H. Dadasyan, E.R. Mikaleyan, S.V. Barseghyan, S. Ayrapetyan, Cell bathing medium as a target for non-thermal effect of MMW on heart muscle contractility. Progress in Elect. Magnetic Res. Symposium, Moscow, Russia (2009) 1057-1060.

  37. V. P. Kalantaryan, Y.S. Babayan, E.S. Gevorgyan, S.N. Hakobayan, A.P. Antoyan, P.O. Vardevayan, Influence of low intensity coherent electromagnetic millimeter radiation on aqua solution of DNA. Prog. In Electromagnetics Res. Letters 13 (2010) 1-9.

    Article  Google Scholar 

  38. B.G. Yemets, On causes of biological efficiency of low-intensive millimeter waves. Int. J. Infrared and Millimeter Waves 19 (1998) 1587-1593.

    Article  Google Scholar 

  39. S.I. Alekseev, and M.C. Ziskin, Millimeter microwave effect on ion transport across lipid bilayer membranes. Bioelectromagnetics 16 (1995) 124-131.

    Article  Google Scholar 

  40. S.M. Motzkin, Low power continuous wave millimeter irradiation fails to produce biological effects in lipid vesicles, mammalian muscle cells, and E.coli. Digest of papers from Int. Symposium” MMW of non-thermal intensity Medicine” Moscow USSR Academy of Sciences, (1991) 367-368.

  41. V.E. Andreev, O.V. Betskii, S.A. Il’ina, K.D. Kazarinov, and A.V. Putvinskii, in Non thermal Effects of Extremely High Frequency Electromagnetic Radiation, Moscow (1981) 167-176.

  42. M.K. Logani and M.C. Ziskin, Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes. Rad. Res. 145 (1996) 231-235.

    Article  Google Scholar 

  43. M.K. Logani and M.C. Ziskin, Millimeter waves at 25 mW/cm2 have no effect on hydroxyl radical-dependent lipid peroxidation. Electro and Magneto Biology, 17 (1998) 67-73.

    Article  Google Scholar 

  44. S.I. Alekseev and M.C. Ziskin, Effects of millimeter waves on ionic currents of Lymnaea Neurons. Bioelectromagnetics 20 (1999) 24-33.

    Article  Google Scholar 

  45. I. Szabo, J. Kappelmayer, S.I. Alekseev, and M. C. Ziskin, Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics 27 (2006) 233-244.

    Article  Google Scholar 

  46. S.J. Martin, C.P. Reutelingesperger, A.J. McGahon, J.A. Rader, R.C. Van Schie, D.M. La Face, D.R. Green, Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpresion of Bcl-2 and Abl. J. Exp. Med. 182 (1995) 1545-1556.

    Article  Google Scholar 

  47. A. Ramundo-Orlando, G. P. Gallerano, P. Stano, A. Doria, E. Giovenale, G. Messina, M. Cappelli, M. D’Arienzo, I. Spassovsky, Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase. Bioelectromagnetics 22 (2007) 303-313.

    Google Scholar 

  48. M. Zhadobov, R. Saileau, V. Viè, M. Hindi, L. Le Coq, and D. Thouroude, Interactions between 60-GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. IEEE Tras. MW Theory and Tec. 54 (2006) 2534-2542.

    Article  Google Scholar 

  49. C. N. Nicolaz, M. Zhadobov, F. Desmots, R. Sauleau, D. Thouroude, D. Michel, Y. Le Drean, Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell Biol. Toxicol. 25 (2009) 471-478.

    Article  Google Scholar 

  50. C. N. Nicolaz, M. Zhadobov, F. Desmots, A. Ansart, R. Sauleau, D. Thouroude, D. Michel, Y. Le Drean, Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Bioelectroamgnetics 30 (2009) 365-373.

    Article  Google Scholar 

  51. A. Beneduci, G. Chidichimo, S. Tripepi, E. Perrotta, F. Cufone, Antiproliferative effect of MMW on human erythromyeloid leukemia cell line K562 in culture: ultrastructural- and metabolic-induced changes. Bioelectrochemistry 7 (2007) 214-20.

    Article  Google Scholar 

  52. A. Beneduci, G. Chidichimo, S. Tripi, E. Perrotta, Transmission elecrron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF7 human breast cancer cells in culture. Anticancer Res. 25 (2005) 1009-1013.

    Google Scholar 

  53. I.A. Titushkin, V.S. Rao, W.F. Pickard, E.G. Moros, G. Shafirstein and M.R. Cho, Altered calcium dynamics mediates P19-derived neuron-like cell responses to millimeter-wave radiation. Rad. Res. 172 (2009) 725-736.

    Article  Google Scholar 

  54. A. Ramundo-Orlando, G. Longo, M. Cappelli, M. Girasole, L. Tarricone, A. Beneduci, R. Massa, The response of giant phospholipids vesicles to millimeter wave radiations. BBA Biomembranes 1788 (2009) 1497-1507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonsina Ramundo-Orlando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramundo-Orlando, A. Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review. J Infrared Milli Terahz Waves 31, 1400–1411 (2010). https://doi.org/10.1007/s10762-010-9731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9731-z

Keywords

Navigation