Skip to main content
Log in

Rigorous Mode Analysis of Coupled Cavity Waveguides in Two-Dimensional Photonic Crystals*

  • Review Paper
  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A new approach for modal analysis of coupled cavity waveguides (CCW) in two-dimensional photonic crystals is presented. The mode propagation constants and the mode field profiles can be accurately derived by a simple matrix calculation, using a one-dimensional lattice sums, a T-matrix of an isolated circular cylinder, and generalized reflection matrices. Numerical examples have confirmed that the convergence of numerical solutions is very fast and the accuracy is very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. [1] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Tow-dimensional photonic band-gap defect mode laser,” Science, vol. 284, pp. 1819–1821, 1999.

    Article  PubMed  Google Scholar 

  2. [2] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science, vol. 293, pp. 1123–1125, 2001.

    Article  PubMed  Google Scholar 

  3. [3] J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-d photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol., vol. 17, pp. 1500–1508, 1999.

    Article  Google Scholar 

  4. [4] R. W. Ziolkowski and M. Tanaka, “FDTD analysis of PBG waveguides, power splitters and switches,” Opt. Quant. Electron., vol. 31, pp. 843–855, 1999.

    Article  Google Scholar 

  5. [5] T. Sondergaard and K. H. Dridi, “Energy flows in photonic crystal waveguides,” Phys. Rev. B, vol. 61, pp. 15688–15696, 2000.

    Article  Google Scholar 

  6. [6] E. R. Brown, C. D. Parker, and E. Yablonovitch, “Radiation properties of a planar antenna on a photonic crystal substrate,” J. Opt. Soc. Am. B, vol. 10, pp. 404–407, 1993.

    Google Scholar 

  7. [7] B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal based resonant antenna with a very high directivity,” J. Appl. Phys., vol. 87, pp. 603–605, 2000.

    Google Scholar 

  8. [8] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476–1479, 1998.

    PubMed  Google Scholar 

  9. [9] P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett., vol. 21, pp. 2017–2019, 1996.

    Google Scholar 

  10. [10] C. Martijn de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E, vol. 57, pp. 3502–3509, 1998.

    Article  Google Scholar 

  11. [11] H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys., vol. 79, no. 10, pp. 7483–7492, 1996.

    Google Scholar 

  12. [12] H. Jia and K. Yasumoto, “A novel formulation of the Fourier model method in S-matrix form for arbitrary shaped gratings,” Int. J. Infrared Millimeter Waves, vol. 25, pp. 1591–1609, 2004.

    Article  Google Scholar 

  13. [13] A. Sharkawy, S. Shi, J. Murakowski, and D. W. Prather, “Analysis and applications photonic crystals coupled waveguide theory,” Photonic Bandgap Materials and Devices, vol. SPIE-4655, pp. 356–367, 2002.

    Google Scholar 

  14. [14] M. Koshiba, Y. Ysuji, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol., vol. 18, no.1, pp. 102–110, 2000.

    Article  Google Scholar 

  15. [15] Yasumoto, K., H. Jia, and K. Sun. “Modal analysis of two-dimensional photonic crystal waveguides formed by rectangular cylinders,” Proc. URSI EMT-S, 739–741, 2004.

    Google Scholar 

  16. [16] N. Stefanou, A. Modinos, “Impurity Bands in photonic insulators,” Phys. Rev. B, vol. 57, pp. 12127–12133, 1998.

    Article  Google Scholar 

  17. [17] M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B, vol. 62, pp. R2247–R2250, 2000.

    Article  Google Scholar 

  18. [18] A. L. Reynolds, U. Peschel, F. Lederer, P. J. Roberts, T. F. Krauss, and P. J. I. deMaagt, “Coupled defects in photonic crystals,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1860–1867, 2001.

    Article  Google Scholar 

  19. [19] K. Yasumoto, H. Toyama, and T. Kushta, “Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique,” IEEE Trans. Antennas Propagat., vol. 52, pp. 2603–2611, 2004.

    Article  MathSciNet  Google Scholar 

  20. [20] H. Jia, K. Yasumoto, and H. Toyama, “Reflection and transmission properties of layered periodic arrays of circular cylinders embedded in magnetized ferrite slab,” IEEE Trans. Antennas Propagat., vol. 53, pp. 1145–1153, 2005.

    Article  Google Scholar 

  21. [21] K. Yasumoto and K. Yoshitomi, “Efficient calculation of lattice sums for free-space periodic Green’s function,” IEEE Trans. Antennas Propagat., vol.47, no.6, pp.1050–1055, 1999.

    Article  Google Scholar 

  22. [22] H. Jia and K. Yasumoto, “S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section,” IEEE Antennas Wireless Propagat. lett., vol. 3, pp. 41–44, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

* Supported by the 21st Century COE Program “Reconstruction of Social Insfrastructure Related to Information Science and Electrical Engineerings”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, H., Yasumoto, K. Rigorous Mode Analysis of Coupled Cavity Waveguides in Two-Dimensional Photonic Crystals*. Int J Infrared Milli Waves 26, 1291–1306 (2005). https://doi.org/10.1007/s10762-005-7604-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-7604-7

Keywords:

Navigation