Skip to main content

Advertisement

Log in

Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ALT:

Alanine aminotransferase

CK-MB:

Creatine kinase-myoglobin binding

COX-2:

Cyclooxygenase-2

cTnI:

Cardiac troponin 1

CD-68:

Cluster of differentiation 68

DMEM:

Dulbeccos modified eagle medium

DEX:

Dexamethasone

ECG:

Electrocardiogram

ELISA:

Enzyme-linked immunosorbent assay

HR:

Heart rate

h:

Hour

i.p.:

Intra-peritoneal

iNOS:

Inducible nitric oxide synthase

KH:

Krebs henseleit

LPS:

Lipopolysaccharide

Ly6C:

Lymphocyte antigen 6 family member C

LVDP:

Left ventricular developed pressure

LDH:

Lactate dehydrogenase

MPO:

Myeloperoxidase

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein-1

NE:

Neutrophil elastase

PBS:

Phosphate buffered saline

RT-qPCR:

Reverse transcriptase quantitative PCR

SRB:

Sulforhodamine-B

SD:

Sprague Dawley

YH:

Yohimbine hydrochloride

References

  1. Tschöpe, C., E. Ammirati, B. Bozkurt, A.L.P. Caforio, L.T. Cooper, S.B. Felix, ..., and S. Van Linthout. 2021. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nature Reviews Cardiology 18 (3): 169–193. https://doi.org/10.1038/s41569-020-00435-x.

    Article  CAS  PubMed  Google Scholar 

  2. Salem, J.E., A. Manouchehri, M. Moey, B. Lebrun-Vignes, L. Bastarache, A. Pariente, ..., and J.J. Moslehi. 2018. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. The Lancet Oncology 19 (12): 1579–1589. https://doi.org/10.1016/s1470-2045(18)30608-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, Z., S. Gao, Y. Bu, and X. Zheng. 2022. Luteolin Protects Cardiomyocytes Cells against Lipopolysaccharide-Induced Apoptosis and Inflammatory Damage by Modulating Nlrp3. Yonsei Medical Journal 63 (3): 220–228. https://doi.org/10.3349/ymj.2022.63.3.220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kang, M., V. Chippa, and J. An. 2023. Viral Myocarditis. In StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2023, StatPearls Publishing LLC.

  5. Wang, X., X. Bu, L. Wei, J. Liu, D. Yang, D.L. Mann, ..., and T. Hayashi. 2021. Global, Regional, and National Burden of Myocarditis From 1990 to 2017: A Systematic Analysis Based on the Global Burden of Disease Study 2017. Frontiers in Cardiovascular Medicine 8: 692990. https://doi.org/10.3389/fcvm.2021.692990.

  6. Ali, M., H.A. Shiwani, M.Y. Elfaki, M. Hamid, R. Pharithi, R. Kamgang, ..., and E.E.-A. Egom. 2022. COVID-19 and myocarditis: a review of literature. The Egyptian Heart Journal 74 (1): 23. https://doi.org/10.1186/s43044-022-00260-2.

  7. Rose, N.R. 2011. Critical cytokine pathways to cardiac inflammation. Journal of Interferon and Cytokine Research 31 (10): 705–710. https://doi.org/10.1089/jir.2011.0057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caforio, A.L., S. Pankuweit, E. Arbustini, C. Basso, J. Gimeno-Blanes, S.B. Felix, ..., and P.M. Elliott. 2013. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal 34 (33): 2636–2648, 2648a–2648d. https://doi.org/10.1093/eurheartj/eht210.

  9. Tschöpe, C., L.T. Cooper, G. Torre-Amione, and S.V. Linthout. 2019. Management of Myocarditis-Related Cardiomyopathy in Adults. Circulation Research 124 (11): 1568–1583. https://doi.org/10.1161/CIRCRESAHA.118.313578.

    Article  CAS  PubMed  Google Scholar 

  10. Ammirati, E., G. Veronese, M. Cipriani, F. Moroni, A. Garascia, M. Brambatti, ..., and M. Frigerio. 2018. Acute and Fulminant Myocarditis: a Pragmatic Clinical Approach to Diagnosis and Treatment. Current Cardiology Reports 20 (11): 114. https://doi.org/10.1007/s11886-018-1054-z.

    Article  PubMed  Google Scholar 

  11. Suresh, A., P. Martens, and W.H.W. Tang. 2022. Biomarkers for Myocarditis and Inflammatory Cardiomyopathy. Current Heart Failure Reports 19 (5): 346–355. https://doi.org/10.1007/s11897-022-00569-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guerrero, N.A., M. Camacho, L. Vila, M.A. Íñiguez, C. Chillón-Marinas, H. Cuervo, ..., and N. Gironès. 2015. Cyclooxygenase-2 and Prostaglandin E2 Signaling through Prostaglandin Receptor EP-2 Favor the Development of Myocarditis during Acute Trypanosoma cruzi Infection. PLOS Neglected Tropical Diseases 9 (8): e0004025. https://doi.org/10.1371/journal.pntd.0004025.

  13. Knuefermann, P., J. Vallejo, and D.L. Mann. 2004. The role of innate immune responses in the heart in health and disease. Trends in Cardiovascular Medicine 14 (1): 1–7. https://doi.org/10.1016/j.tcm.2003.09.003.

    Article  PubMed  Google Scholar 

  14. Dawson, J., W. Miltz, A.K. Mir, and C. Wiessner. 2003. Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opinion on Therapeutic Targets 7 (1): 35–48. https://doi.org/10.1517/14728222.7.1.35.

    Article  CAS  PubMed  Google Scholar 

  15. Fine, N., N. Tasevski, C.A. McCulloch, H.C. Tenenbaum, and M. Glogauer. 2020. The Neutrophil: Constant Defender and First Responder. Frontiers in Immunology 11: 571085. https://doi.org/10.3389/fimmu.2020.571085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rivadeneyra, L., N. Charó, D. Kviatcovsky, S. de la Barrera, R.M. Gómez, and M. Schattner. 2018. Role of neutrophils in CVB3 infection and viral myocarditis. Journal of Molecular and Cellular Cardiology 125: 149–161. https://doi.org/10.1016/j.yjmcc.2018.08.029.

    Article  CAS  PubMed  Google Scholar 

  17. Ammirati, E., M. Cipriani, C. Moro, C. Raineri, D. Pini, P. Sormani, ..., and P.G. Camici. 2018. Clinical Presentation and Outcome in a Contemporary Cohort of Patients With Acute Myocarditis: Multicenter Lombardy Registry. Circulation 138 (11): 1088–1099. https://doi.org/10.1161/circulationaha.118.035319.

    Article  PubMed  Google Scholar 

  18. Yang, H., M. Poznik, S. Tang, P. Xue, L. Du, C. Liu, ..., and J.J. Chruma. 2021. Synthesis of Conformationally Liberated Yohimbine Analogues and Evaluation of Cytotoxic Activity. ACS Omega 6 (29): 19291–19303. https://doi.org/10.1021/acsomega.1c02784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wibowo, D., D.M. Soebadi, and M.A. Soebadi. 2021. Yohimbine as a treatment for erectile dysfunction: A systematic review and meta-analysis. Turkish Journal of Urology 47 (6): 482–488. https://doi.org/10.5152/tud.2021.21206.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ojatula, A., M. Idu, and O. Timothy. 2020. Aphrodisiac Potentials of <i>Pausinystalia yohimbe</i> (K. Schum.) Pierre ex Beille Methanol Root Extract in Male Wistar Rats. Journal of Integrative Nephrology and Andrology 7 (2): 47–55. https://doi.org/10.4103/jina.jina_7_20.

    Article  Google Scholar 

  21. Lin, Y., X. Zhu, W.Z. Yao, Y.L. Yang, L.T. A, and L. Chen. 2011. Yohimbine protects against endotoxin-induced acute lung injury by blockade of alpha 2A adrenergic receptor in rats. Chinese Medical Journal (English) 124 (7): 1069–1074.

    CAS  Google Scholar 

  22. Miksa, M., P. Das, M. Zhou, R. Wu, W. Dong, Y. Ji, ..., and P. Wang. 2009. Pivotal role of the alpha(2A)-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS One 4 (5): e5504. https://doi.org/10.1371/journal.pone.0005504.

  23. Zhang, Q., L.-Q. Hu, H.-Q. Li, J. Wu, N.-N. Bian, and G. Yan. 2019. Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway. The Korean Journal of Physiology & Pharmacology 23 (2): 103–111. https://doi.org/10.4196/kjpp.2019.23.2.103.

    Article  CAS  Google Scholar 

  24. Sun, J., J. Sun, and X. Zhou. 2019. Protective functions of myricetin in LPS-induced cardiomyocytes H9c2 cells injury by regulation of MALAT1. European Journal of Medical Research 24 (1): 20. https://doi.org/10.1186/s40001-019-0378-5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tan, S., Z. Long, X. Hou, Y. Lin, J. Xu, X. You, ..., and Y. Zhang. 2019. H(2) Protects Against Lipopolysaccharide-Induced Cardiac Dysfunction via Blocking TLR4-Mediated Cytokines Expression. Frontiers in Pharmacology 10: 865. https://doi.org/10.3389/fphar.2019.00865.

  26. Zhang, S., Y. Xu, J. Zhu, J. Ma, Q. Niu, and X. Wang. 2020. Carbon monoxide attenuates LPS-induced myocardial dysfunction in rats by regulating the mitochondrial dynamic equilibrium. European Journal of Pharmacology 889: 173726. https://doi.org/10.1016/j.ejphar.2020.173726.

    Article  CAS  PubMed  Google Scholar 

  27. Tirunavalli, S.K., M. Kuncha, R. Sistla, and S.B. Andugulapati. 2023. Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. Journal of Nutritional Biochemistry 116: 109294. https://doi.org/10.1016/j.jnutbio.2023.109294.

    Article  CAS  PubMed  Google Scholar 

  28. Shaikh, T.B., M. Kuncha, S.B. Andugulapati, and R. Sistla. 2023. Dehydrozingerone alleviates pulmonary fibrosis via inhibition of inflammation and epithelial-mesenchymal transition by regulating the Wnt/β-catenin pathway. European Journal of Pharmacology 953: 175820. https://doi.org/10.1016/j.ejphar.2023.175820.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, G., J. Xie, Y. Shi, R. Chen, L. Li, M. Wang, ..., and J. Xu. 2020. Sec-O-glucosylhamaudol suppressed inflammatory reaction induced by LPS in RAW264.7 cells through inhibition of NF-κB and MAPKs signaling. Bioscience Reports 40 (2). https://doi.org/10.1042/bsr20194230.

  30. Khodir, A.E., H.A. Ghoneim, M.A. Rahim, and G.M. Suddek. 2016. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats. Human and Experimental Toxicology 35 (4): 388–397. https://doi.org/10.1177/0960327115591372.

    Article  CAS  PubMed  Google Scholar 

  31. Konopelski, P., and M. Ufnal. 2016. Electrocardiography in rats: a comparison to human. Physiological Research 65 (5): 717–725. https://doi.org/10.33549/physiolres.933270.

    Article  CAS  PubMed  Google Scholar 

  32. Ravindran, S., J. Murali, S.K. Amirthalingam, S. Gopalakrishnan, and G.A. Kurian. 2017. Vascular calcification abrogates the nicorandil mediated cardio-protection in ischemia reperfusion injury of rat heart. Vascular Pharmacology 89: 31–38. https://doi.org/10.1016/j.vph.2016.12.004.

    Article  CAS  PubMed  Google Scholar 

  33. Mahmoudabady, M., M. Lashkari, S. Niazmand, and M. Soukhtanloo. 2017. Cardioprotective effects of Achillea wilhelmsii on the isolated rat heart in ischemia-reperfusion. Journal of Traditional & Complementary Medicine 7 (4): 501–507. https://doi.org/10.1016/j.jtcme.2016.12.010.

    Article  CAS  Google Scholar 

  34. Andugulapati, S.B., K. Gourishetti, S.K. Tirunavalli, T.B. Shaikh, and R. Sistla. 2020. Biochanin-A ameliorates pulmonary fibrosis by suppressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems. Phytomedicine 78: 153298. https://doi.org/10.1016/j.phymed.2020.153298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noda, S. 1980. Histopathology of endomyocardial biopsies from patients with idiopathic cardiomyopathy; quantitative evaluation based on multivariate statistical analysis. Japanese Circulation Journal 44 (2): 95–116. https://doi.org/10.1253/jcj.44.95.

    Article  CAS  PubMed  Google Scholar 

  36. Şener, G., H. Toklu, F. Ercan, and G. Erkanlı. 2005. Protective effect of β-glucan against oxidative organ injury in a rat model of sepsis. International Immunopharmacology 5 (9): 1387–1396. https://doi.org/10.1016/j.intimp.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  37. Kotipalli, R.S.S., S.K. Tirunavalli, A.B. Pote, B.D. Sahu, M. Kuncha, M.K. Jerald, ..., and S.B. Andugulapati. 2023. Sinigrin Attenuates the Dextran Sulfate Sodium-induced Colitis in Mice by Modulating the MAPK Pathway. Inflammation 46 (3): 787–807. https://doi.org/10.1007/s10753-022-01780-4.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma, N., T.B. Shaikh, A. Eedara, M. Kuncha, R. Sistla, and S.B. Andugulapati. 2022. Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. European Journal of Pharmacology 937: 175366. https://doi.org/10.1016/j.ejphar.2022.175366.

    Article  CAS  PubMed  Google Scholar 

  39. De Luca, G., G. Cavalli, C. Campochiaro, M. Tresoldi, and L. Dagna. 2018. Myocarditis: An Interleukin-1-Mediated Disease? Frontiers in Immunology 9: 1335. https://doi.org/10.3389/fimmu.2018.01335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han, S., H. Gao, S. Chen, Q. Wang, X. Li, L.-J. Du, ..., and S. Yang. 2019. Procyanidin A1 Alleviates Inflammatory Response induced by LPS through NF-κB, MAPK, and Nrf2/HO-1 Pathways in RAW264.7 cells. Scientific Reports 9 (1): 15087. https://doi.org/10.1038/s41598-019-51614-x.

  41. Tirunavalli, S.K., K. Gourishetti, R.S.S. Kotipalli, M. Kuncha, M. Kathirvel, R. Kaur, ..., and S.B. Andugulapati. 2021. Dehydrozingerone ameliorates Lipopolysaccharide induced acute respiratory distress syndrome by inhibiting cytokine storm, oxidative stress via modulating the MAPK/NF-κB pathway. Phytomedicine 92: 153729. https://doi.org/10.1016/j.phymed.2021.153729.

  42. Hu, H., Y. Fu, M. Li, H. Xia, Y. Liu, X. Sun, ..., and Y. Wu. 2020. Interleukin-35 pretreatment attenuates lipopolysaccharide-induced heart injury by inhibition of inflammation, apoptosis and fibrotic reactions. International Immunopharmacology 86: 106725. https://doi.org/10.1016/j.intimp.2020.106725.

  43. Punja, M., D.G. Mark, J.V. McCoy, R. Javan, J.M. Pines, and W. Brady. 2010. Electrocardiographic manifestations of cardiac infectious-inflammatory disorders. American Journal of Emergency Medicine 28 (3): 364–377. https://doi.org/10.1016/j.ajem.2008.12.017.

    Article  PubMed  Google Scholar 

  44. Hanna, A., and N.G. Frangogiannis. 2020. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovascular Drugs and Therapy 34 (6): 849–863. https://doi.org/10.1007/s10557-020-07071-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tada, Y., and J. Suzuki. 2016. Oxidative stress and myocarditis. Current Pharmaceutical Design 22 (4): 450–471. https://doi.org/10.2174/1381612822666151222160559.

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen, L.S., L.T. Cooper, M. Kerneis, C. Funck-Brentano, J. Silvain, N. Brechot, ..., and J.-E. Salem. 2022. Systematic analysis of drug-associated myocarditis reported in the World Health Organization pharmacovigilance database. Nature Communications 13 (1): 25. https://doi.org/10.1038/s41467-021-27631-8.

  47. Alexopoulou, L., A.C. Holt, R. Medzhitov, and R.A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413 (6857): 732–738. https://doi.org/10.1038/35099560.

    Article  CAS  PubMed  Google Scholar 

  48. Francis, S.E., H. Holden, C.M. Holt, and G.W. Duff. 1998. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology 30 (2): 215–223. https://doi.org/10.1006/jmcc.1997.0592.

    Article  CAS  PubMed  Google Scholar 

  49. Baumgarten, G., P. Knuefermann, D. Kalra, F. Gao, G.E. Taffet, L. Michael, ..., and D.L. Mann. 2002. Load-Dependent and -Independent Regulation of Proinflammatory Cytokine and Cytokine Receptor Gene Expression in the Adult Mammalian Heart. Circulation 105 (18): 2192–2197. https://doi.org/10.1161/01.CIR.0000015608.37608.18.

    Article  CAS  PubMed  Google Scholar 

  50. Dewald, O., P. Zymek, K. Winkelmann, A. Koerting, G. Ren, T. Abou-Khamis, ..., and N.G. Frangogiannis. 2005. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research 96 (8): 881–889. https://doi.org/10.1161/01.RES.0000163017.13772.3a.

    Article  CAS  PubMed  Google Scholar 

  51. Eiken, H.G., E. Øie, J.K. Damås, A. Yndestad, V. Bjerkeli, H. Aass, ..., and P. Aukrust. 2001. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. European Journal of Clinical Investigation 31 (5): 389–397. https://doi.org/10.1046/j.1365-2362.2001.00795.x.

    Article  CAS  PubMed  Google Scholar 

  52. Fuse, K., M. Kodama, H. Hanawa, Y. Okura, M. Ito, T. Shiono, ..., and Y. Aizawa. 2001. Enhanced expression and production of monocyte chemoattractant protein-1 in myocarditis. Clinical and Experimental Immunology 124 (3): 346–352. https://doi.org/10.1046/j.1365-2249.2001.01510.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, X., Z. Li, X. Shen, N. Nie, and Y. Shen. 2022. IL-17 upregulates MCP-1 expression via Act1 / TRAF6 / TAK1 in experimental autoimmune myocarditis. Cytokine 152: 155823. https://doi.org/10.1016/j.cyto.2022.155823.

    Article  CAS  PubMed  Google Scholar 

  54. Hartman, M.H.T., H.E. Groot, I.M. Leach, J.C. Karper, and P. van der Harst. 2018. Translational overview of cytokine inhibition in acute myocardial infarction and chronic heart failure. Trends in Cardiovascular Medicine 28 (6): 369–379. https://doi.org/10.1016/j.tcm.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  55. Niu, J., A. Azfer, and P.E. Kolattukudy. 2008. Protection against lipopolysaccharide-induced myocardial dysfunction in mice by cardiac-specific expression of soluble Fas. Journal of Molecular and Cellular Cardiology 44 (1): 160–169. https://doi.org/10.1016/j.yjmcc.2007.09.016.

    Article  CAS  PubMed  Google Scholar 

  56. He, H., X. Chang, J. Gao, L. Zhu, M. Miao, and T. Yan. 2015. Salidroside Mitigates Sepsis-Induced Myocarditis in Rats by Regulating IGF-1/PI3K/Akt/GSK-3β Signaling. Inflammation 38 (6): 2178–2184. https://doi.org/10.1007/s10753-015-0200-7.

    Article  CAS  PubMed  Google Scholar 

  57. Dogan, I., K. Karaman, B. Sonmez, S. Celik, and O. Turker. 2009. Relationship between serum neutrophil count and infarct size in patients with acute myocardial infarction. Nuclear Medicine Communications 30 (10): 797–801. https://doi.org/10.1097/MNM.0b013e32832e3a16.

    Article  PubMed  Google Scholar 

  58. Carbone, F., L.A. Crowe, A. Roth, F. Burger, S. Lenglet, V. Braunersreuther, ..., and F. Montecucco. 2016. Treatment with anti-RANKL antibody reduces infarct size and attenuates dysfunction impacting on neutrophil-mediated injury. Journal of Molecular and Cellular Cardiology 94: 82–94. https://doi.org/10.1016/j.yjmcc.2016.03.013.

    Article  CAS  PubMed  Google Scholar 

  59. Raadsen, M., J. Du Toit, T. Langerak, B. van Bussel, E. van Gorp, and M. Goeijenbier. 2021. Thrombocytopenia in Virus Infections. Journal of Clinical Medicine 10 (4): 877. https://doi.org/10.3390/jcm10040877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vincent, J.L., A. Yagushi, and O. Pradier. 2002. Platelet function in sepsis. Critical Care Medicine 30 (5 Suppl): S313-317. https://doi.org/10.1097/00003246-200205001-00022.

    Article  CAS  PubMed  Google Scholar 

  61. Shen, L., K. Lu, Z. Chen, Y. Zhu, C. Zhang, and L. Zhang. 2023. Pre-treatment with galectin-1 attenuates lipopolysaccharide-induced myocarditis by regulating the Nrf2 pathway. European Journal of Histochemistry 67 (4): 3816. https://doi.org/10.4081/ejh.2023.3816.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Buttà, C., L. Zappia, G. Laterra, and M. Roberto. 2020. Diagnostic and prognostic role of electrocardiogram in acute myocarditis: A comprehensive review. Annals of Noninvasive Electrocardiology 25 (3): e12726. https://doi.org/10.1111/anec.12726.

    Article  PubMed  Google Scholar 

  63. Porela, P., V. Kytö, K. Nikus, M. Eskola, and K.E. Airaksinen. 2012. PR depression is useful in the differential diagnosis of myopericarditis and ST elevation myocardial infarction. Annals of Noninvasive Electrocardiology 17 (2): 141–145. https://doi.org/10.1111/j.1542-474X.2012.00489.x.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ginsberg, F., and J.E. Parrillo. 2013. Fulminant myocarditis. Critical Care Clinics 29 (3): 465–483. https://doi.org/10.1016/j.ccc.2013.03.004.

    Article  PubMed  Google Scholar 

  65. Dai, M.Y., Y.C. Yan, L.Y. Wang, C.X. Zhao, D.W. Wang, and J.G. Jiang. 2023. Characteristics of Electrocardiogram Findings in Fulminant Myocarditis. Journal of Cardiovascular Development and Disease 10 (7): 280. https://doi.org/10.3390/jcdd10070280.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kheiry, M., M. Dianat, M. Badavi, S.A. Mard, and V. Bayati. 2019. p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress. Iranian Journal of Basic Medical Sciences 22 (8): 949–955. https://doi.org/10.22038/ijbms.2019.36316.8650.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tsai, H.-J., C.-C. Shih, K.-Y. Chang, M.-H. Liao, W.-J. Liaw, C.-C. Wu, and C.-M. Tsao. 2021. Angiotensin-(1–7) treatment blocks lipopolysaccharide-induced organ damage, platelet dysfunction, and IL-6 and nitric oxide production in rats. Scientific Reports 11 (1): 610. https://doi.org/10.1038/s41598-020-79902-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chakraborty, R.K., and B. Burns. 2023. Systemic Inflammatory Response Syndrome. In StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2023, StatPearls Publishing LLC.

  69. Nymo, S.H., J. Hulthe, T. Ueland, J. McMurray, J. Wikstrand, E.T. Askevold, ..., P. Aukrust. 2014. Inflammatory cytokines in chronic heart failure: interleukin-8 is associated with adverse outcome. Results from CORONA. European Journal of Heart Failure 16 (1): 68–75. https://doi.org/10.1093/eurjhf/hft125.

  70. Husebye, T., J. Eritsland, H. Arnesen, R. Bjørnerheim, A. Mangschau, I. Seljeflot, and G. Andersen. 2014. Association of interleukin 8 and myocardial recovery in patients with ST-elevation myocardial infarction complicated by acute heart failure. PLoS ONE 9 (11): e112359. https://doi.org/10.1371/journal.pone.0112359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chou, W.Y., K.H. Chuang, D. Sun, Y.H. Lee, P.H. Kao, Y.Y. Lin, ..., and Y.L. Wu. 2015. Inhibition of PKC-Induced COX-2 and IL-8 Expression in Human Breast Cancer Cells by Glucosamine. Journal of Cellular Physiology 230 (9): 2240–2251. https://doi.org/10.1002/jcp.24955.

    Article  CAS  PubMed  Google Scholar 

  72. Neha, M.M. Ansari, and H.A. Khan. 2017. Yohimbine hydrochloride ameliorates collagen type-II-induced arthritis targeting oxidative stress and inflammatory cytokines in Wistar rats. Environmental Toxicology 32 (2): 619–629. https://doi.org/10.1002/tox.22264.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, N., X. Aiyasiding, W.J. Li, H.H. Liao, and Q.Z. Tang. 2022. Neutrophil degranulation and myocardial infarction. Cell Communication and Signaling: CCS 20 (1): 50. https://doi.org/10.1186/s12964-022-00824-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu, X., R.H. Kennedy, and S.J. Liu. 2003. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. Journal of Biological Chemistry 278 (18): 16304–16309. https://doi.org/10.1074/jbc.M212321200.

    Article  CAS  PubMed  Google Scholar 

  75. Ogura, Y., K. Tajiri, N. Murakoshi, D. Xu, S. Yonebayashi, S. Li, ..., and M. Ieda. 2021. Neutrophil Elastase Deficiency Ameliorates Myocardial Injury Post Myocardial Infarction in Mice. International Journal of Molecular Sciences 22 (2). https://doi.org/10.3390/ijms22020722.

  76. Sharma, N., R. Sistla, and S.B. Andugulapati. 2023. Yohimbine ameliorates liver inflammation and fibrosis by regulating oxidative stress and Wnt/β-catenin pathway. Phytomedicine 123: 155182. https://doi.org/10.1016/j.phymed.2023.155182.

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Y., X. Yu, F. Wang, Y. Wang, Y. Wang, H. Li, ..., and H. Wang. 2013. Yohimbine promotes cardiac NE release and prevents LPS-induced cardiac dysfunction via blockade of presynaptic α2A-adrenergic receptor. PLoS One 8 (5): e63622. https://doi.org/10.1371/journal.pone.0063622.

  78. Newby, L.K., M.S. Marber, C. Melloni, L. Sarov-Blat, L.H. Aberle, P.E. Aylward, ..., and S. Investigators. 2014. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet 384 (9949): 1187–1195. https://doi.org/10.1016/S0140-6736(14)60417-7.

    Article  CAS  PubMed  Google Scholar 

  79. Shi, Y., C. Chen, U. Lisewski, U. Wrackmeyer, M. Radke, D. Westermann, ..., and M. Gotthardt. 2009. Cardiac Deletion of the Coxsackievirus-Adenovirus Receptor Abolishes Coxsackievirus B3 Infection and Prevents Myocarditis In Vivo. Journal of the American College of Cardiology 53 (14): 1219–1226. https://doi.org/10.1016/j.jacc.2008.10.064.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, M., R. Sankula, B.M. Tsai, K.K. Meldrum, M. Turrentine, K.L. March, ..., and D.R. Meldrum. 2004. P38 MAPK Mediates Myocardial Proinflammatory Cytokine Production and Endotoxin-Induced Contractile Suppression. Shock 21 (2): 170–174. https://doi.org/10.1097/01.shk.0000110623.20647.aa.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the Director, CSIR-IICT, Hyderabad, India, for providing the facilities and funding necessary for the conducting of this work. CSIR-IICT manuscript communication number: IICT/Pubs./2023/204. A. V acknowledges DST-Inspire (IF190483) for providing a fellowship. T.B.S and R.K acknowledge the Council of Scientific and Industrial Research, New Delhi for providing SRF. We acknowledge Prof. Gino A Kurian from the Department of Biotechnology, Sastra Deemed University for providing training on the Langendorff apparatus. The authors also acknowledge Dr C Yogesh (CSIR-IICT) for assistance in histological observations.

Funding

Used internal funds of the institute. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.B.A, S. R. K; Methodology: A. V, S.B.A, S. R. K.; In vitro cell culture: A. V; RT-qPCR, Western-blot analysis, A.V R.K; In vivo and ex-vivo experiments: A.V, T.B.S, A.E; Manuscript 1st draft writing: A.V, Manuscript writing - review & editing: S.B.A and S. R. K.; funding acquisition: S.R. K and S.B.A.

Corresponding authors

Correspondence to Sai Balaji Andugulapati or Ramakrishna Sistla.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 120 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeram, A., Shaikh, T.B., Kaur, R. et al. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation (2024). https://doi.org/10.1007/s10753-024-01985-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01985-9

KEY WORDS

Navigation