Skip to main content

Advertisement

Log in

Benzimidazole Derivative (N-{4-[2-(4-Methoxyphenyl)-1H-Benzimidazole-1-Sulfonyl] Phenyl} Acetamide) Ameliorates Methotrexate-Induced Intestinal Mucositis by Suppressing Oxidative Stress and Inflammatory Markers in Mice

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Methotrexate (MTX)-induced intestinal mucositis (IM) is a common side effect in cancer treatment that impairs the immune system and gut microbes, resulting in loss of mucosal integrity and gut barrier dysfunction. The quality of life and outcomes of treatment are compromised by IM. The present study was designed to investigate the mucoprotective potential of the benzimidazole derivative N-{4-[2-(4-methoxyphenyl)-1H-benzimidazole-1-sulfonyl] phenyl} acetamide (B8) on MTX-induced IM in mice. IM was induced by a single dose of MTX in mice and assessed by physical manifestations as well as biochemical, oxidative, histological, and inflammatory parameters. B8 (1, 3, 9 mg/kg) significantly reduced diarrhea score, mitigated weight loss, increased feed intake and, survival rate in a dose-dependent manner. Notably, B8 exhibited a mucoprotective effect evident through the mitigation of villus atrophy, crypt hypoplasia, diminished crypt mitotic figures, mucin depletion, and oxidative stress markers (GSH, SOD, MDA, and catalase concentration). Gene expression analysis revealed that B8 downregulated the mRNA expression of tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and nuclear factor-κB (NF-κB) and concurrently upregulated IL-10 expression in contrast to the MTX group. Further, B8 significantly improved the luminal microflora profile by augmenting the growth of Lactobacillus spp. and reducing the number of pathogenic bacteria (E. coli). Additionally, the enzyme-linked immunoassay showed that B8 decreased the levels of pro-inflammatory cytokines. Our findings suggest that B8 had mucoprotective effects against MTX-induced IM and could be used as an adjunct in chemotherapy to deter this side effect.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Data is available from the corresponding author upon reasonable request.

Abbreviations

B8:

(N-{4-[2-(4-methoxyphenyl)-1H-benzimidazole-1-sulfonyl] phenyl} acetamide)

IM:

Intestinal mucositis

MTX:

Methotrexate

MSZ:

Mesalazine

DMSO:

Dimethyl sulfoxide

CBC:

Complete blood count

NO :

Nitrite

NF-κB :

Nuclear factor-κB

TNF-α :

Tumor necrosis factor-α

COX-2 :

Cyclooxygenase-2

IL-6 :

Interleukin-6

IL-1β :

Interleukin-1β

i.p:

Intraperitoneal

ROS:

Reactive oxygen species

GSH:

Glutathione

SOD:

Superoxide dismutase

CAT:

Catalase

MDA:

Malondialdehyde

References

  1. Cunningham, D., R.J. Morgan, P.R. Mills, L.M. Nelson, P.G. Toner, M. Soukop, et al. 1985. Functional and structural changes of the human proximal small intestine after cytotoxic therapy. Journal of Clinical Pathology 38: 265–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keefe, D.M., J. Brealey, G.J. Goland, and A.G. Cummins. 2000. Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 47: 632–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keefe, D.M. 2004. Gastrointestinal mucositis: A new biological model. Supportive Care in Cancer 12: 6–9.

    Article  PubMed  Google Scholar 

  4. Fideles, L.D.S., J.A.L. de Miranda, C.D.S. Martins, M.L.L. Barbosa, H.B. Pimenta, P.V.D.S. Pimentel, et al. 2020. Role of rutin in 5-fluorouracil-induced intestinal mucositis: prevention of histological damage and reduction of inflammation and oxidative stress. Molecules (Basel, Switzerland) 25: 2786.

    Article  PubMed  Google Scholar 

  5. Boeing, T., P. de Souza, S. Speca, L.B. Somensi, L.N.B. Mariano, B.J. Cury, et al. 2020. Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties. British Journal of Pharmacology. 177: 2393–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Batista, V.L., T.F. da Silva, L.C.L. de Jesus, N.D. Coelho-Rocha, F.A.L. Barroso, L.M. Tavares, et al. 2020. Probiotics, prebiotics, synbiotics, and paraprobiotics as a therapeutic alternative for intestinal mucositis. Frontiers in Microbiology 11: 544490–544490.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sauruk da Silva, K., B. Carla da Silveira, L.R. Bueno, L.C. Malaquias da Silva, L. da Silva Fonseca, E.S. Fernandes, et al. 2021. Beneficial effects of polysaccharides on the epithelial barrier function in intestinal mucositis. Frontiers in Physiology 12: 714846.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boeing, T., M.B. Gois, P. de Souza, L.B. Somensi, D.M.G. Sant Ana, and L.M. da Silva. 2021. Irinotecan-induced intestinal mucositis in mice: A histopathological study. Cancer Chemotherapy and Pharmacology 87: 327–336.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, J., Y. Gan, M. Li, L. Chen, J. Liang, J. Zhuo, et al. 2020. Patchouli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-kB pathway and regulation of microbiota. Biomedicine & Pharmacotherapy 124: 109883.

    Article  CAS  Google Scholar 

  10. Atiq, A., B. Shal, M. Naveed, A. Khan, J. Ali, S. Zeeshan, et al. 2019. Diadzein ameliorates 5-fluorouracil-induced intestinal mucositis by suppressing oxidative stress and inflammatory mediators in rodents. European Journal of Pharmacology 843: 292–306.

    Article  CAS  PubMed  Google Scholar 

  11. Denham, J.W., and M. Hauer-Jensen. 2002. The radiotherapeutic injury–a complex ‘wound.’ Radiotherapy and Oncology 63: 129–145.

    Article  PubMed  Google Scholar 

  12. Criswell, T., K. Leskov, S. Miyamoto, G. Luo, and D.A. Boothman. 2003. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22: 5813.

    Article  CAS  PubMed  Google Scholar 

  13. Sonis, S.T., L.S. Elting, D. Keefe, D.E. Peterson, M. Schubert, M. Hauer-Jensen, et al. 2004. Perspectives on cancer therapy-induced mucosal injury: Pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100: 1995–2025.

    Article  PubMed  Google Scholar 

  14. Ali, J., A.U. Khan, F.A. Shah, H. Ali, S.U. Islam, Y.S. Kim, et al. 2019. Mucoprotective effects of saikosaponin-A in 5-fluorouracil-induced intestinal mucositis in mice model. Life Sciences 239: 116888.

    Article  CAS  PubMed  Google Scholar 

  15. Xiong, B., M. Liu, C. Zhang, Y. Hao, P. Zhang, L. Chen, et al. 2020. Alginate oligosaccharides enhance small intestine cell integrity and migration ability. Life Sciences 258: 118085.

    Article  CAS  PubMed  Google Scholar 

  16. Dahlgren, D., M. Sjöblom, P.M. Hellström, and H. Lennernäs. 2021. Chemotherapeutics-induced intestinal mucositis: Pathophysiology and potential treatment strategies. Frontiers in Pharmacology 12: 681417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, H.J., J.H. Kim, W. Moon, J. Park, S.J. Park, G.A. Song, et al. 2015. Rebamipide attenuates 5-fluorouracil-induced small intestinal mucositis in a mouse model. Biological & Pharmaceutical Bulletin 38: 179–183.

    Article  CAS  Google Scholar 

  18. Leitão, R.F., G.A. Brito, R.B. Oriá, M.B. Braga-Neto, E.A. Bellaguarda, J.V. Silva, et al. 2011. Role of inducible nitric oxide synthase pathway on methotrexate-induced intestinal mucositis in rodents. BMC Gastroenterology 11: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sougiannis, A.T., B.N. VanderVeen, J.M. Davis, D. Fan, and E.A. Murphy. 2021. Understanding chemotherapy-induced intestinal mucositis and strategies to improve gut resilience. American Journal of Physiology-Gastrointestinal and Liver Physiology 320: G712–G719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pico, J.L., A. Avila-Garavito, and P. Naccache. 1998. Mucositis: Its occurrence, consequences, and treatment in the oncology setting. The Oncologist 3: 446–451.

    Article  CAS  PubMed  Google Scholar 

  21. Capasso, R., P. Orlando, E. Pagano, T. Aveta, L. Buono, F. Borrelli, et al. 2014. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: Involvement of CB1 receptors and TRPV1 channels. British Journal of Pharmacology 171: 4026–4037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, C.J., X.S. Wen, H.F. Gao, Z.H. Liu, X.K. Xu, L.F. Li, et al. 2016. Steamed root of Rehmannia glutinosa Libosch (Plantaginaceae) alleviates methotrexate-induced intestinal mucositis in rats. Journal of Ethnopharmacology 183: 143–150.

    Article  PubMed  Google Scholar 

  23. Akhtar, M.J., M.S. Yar, V.K. Sharma, A.A. Khan, Z. Ali, M.D.R. Haider, et al. 2020. Recent progress of benzimidazole hybrids for anticancer potential. Current Medicinal Chemistry 27: 5970–6014.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar, A., Y. Kumar, J.K. Sahu, and S. Kumar. 2020. Synthesis, characterization and antimicrobial evaluation of some N-substituted benzimidazole derivatives. Current Drug Discovery Technologies 17: 87–91.

    Article  CAS  PubMed  Google Scholar 

  25. Gaba, M., P. Gaba, D. Uppal, N. Dhingra, M.S. Bahia, O. Silakari, et al. 2015. Benzimidazole derivatives: search for GI-friendly anti-inflammatory analgesic agents. Acta Pharmaceutica Sinica B 5: 337–342.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Idris, Z., M. Abbas, H. Nadeem, and A.-U. Khan. 2019. The benzimidazole derivatives, B1 (N-[(1H-benzimidazol-2-yl)methyl]-4-methoxyaniline) and B8 (N-{4-[(1H-benzimidazol-2-yl)methoxy]phenyl}acetamide) attenuate morphine-induced paradoxical pain in mice. Frontiers in Neuroscience 13: 101.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen, C., L. Tian, M. Zhang, Q. Sun, X. Zhang, X. Li, et al. 2013. Protective effect of amifostine on high-dose methotrexate-induced small intestinal mucositis in mice. Digestive diseases and sciences 58: 3134–3143.

    Article  CAS  PubMed  Google Scholar 

  28. Yeung, C.-Y., W.-T. Chan, C.-B. Jiang, M.-L. Cheng, C.-Y. Liu, S.-W. Chang, et al. 2015. Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model. PLoS ONE 10: e0138746.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rasheed, H., R. Afridi, A.U. Khan, M.Z. Ullah, S. Khalid, A. Atiq, et al. 2018. Anti-inflammatory, anti-rheumatic and analgesic activities of 2-(5-mercapto-1,3,4-oxadiazol-2-yl)-N-propylbenzenesulphonamide (MOPBS) in rodents. Inflammopharmacology 26: 1037–1049.

    Article  CAS  PubMed  Google Scholar 

  30. Khalid, S., M.Z. Ullah, A.U. Khan, R. Afridi, H. Rasheed, A. Khan, et al. 2018. Antihyperalgesic properties of honokiol in inflammatory pain models by targeting of NF-κB and Nrf2 signaling. Frontiers in Pharmacology 9: 140.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rieger, J., L.M. Pelckmann, and B. Drewes. 2021. Preservation and processing of intestinal tissue for the assessment of histopathology. Methods in Molecular Biology (Clifton, NJ) 2223: 267–280.

    Article  CAS  Google Scholar 

  32. Zubair, H.M., M. Naveed, M.A. Khan, S. Umair, I. ul Haq, M. Ibrahim, et al. 2023. Assessment of antioxidant, antimicrobial, and acute toxicology profiles of Cordia rothii and Viola serpens. Letters in Drug Design & Discovery 20.

  33. Engevik, M.A., B. Luk, et al. 2019. Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. MBio 10: e01087-19.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soares, P.M., J.M. Mota, A.S. Gomes, R.B. Oliveira, A.M. Assreuy, G.A. Brito, et al. 2008. Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemotherapy and Pharmacology 63: 91–98.

    Article  CAS  PubMed  Google Scholar 

  35. Morán, M., J. Delgado, B. González, R. Manso, and A. Megías. 2004. Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training. Acta Physiologica Scandinavica 180: 157–166.

    Article  PubMed  Google Scholar 

  36. Akhtar, M.F., K.M. Ashraf, A. Saleem, A. Sharif, H.M. Zubair, and F. Anwar. 2022. Antidiabetic potential and antioxidant activity of Olea europaea subsp. Cuspidata (Indian olive) seed extracts. Evidence-based Complementary and Alternative Medicine 2022: 5164985.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Amin, A., M.F. Akhtar, A. Saleem, A. Sharif, S. Shah, M.I. Khan, et al. 2022. Pterostilbene improves CFA-induced arthritis and peripheral neuropathy through modulation of oxidative stress, inflammatory cytokines and neurotransmitters in Wistar rats. Inflammopharmacology 30: 2285–2300.

    Article  CAS  PubMed  Google Scholar 

  38. Buege, J.A., and S.D. Aust. 1978. [30] Microsomal lipid peroxidation. In Methods in enzymology, vol. 52, ed. S. Fleischer and L. Packer, 302–310. Academic Press.

    Google Scholar 

  39. Batool, R., M.R. Khan, and M. Majid. 2017. Euphorbia dracunculoides L. abrogates carbon tetrachloride induced liver and DNA damage in rats. BMC Complementary and Alternative Medicine 17: 223.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vogel, A.I. 1960. A textbook of quantitative inorganic analysis, 3rd ed., 882–885. Longman Group Ltd.

    Google Scholar 

  41. Schales, O., and S.S. Schales. 1941. A simple and accurate method for the determination of chloride in biological fluids. Journal of Biological Chemistry 140: 879–882.

    Article  CAS  Google Scholar 

  42. Stringer, A.M., R.J. Gibson, R.M. Logan, J.M. Bowen, A.S. Yeoh, J. Hamilton, et al. 2009. Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Experimental Biology and Medicine (Maywood, NJ) 234: 430–441.

    Article  CAS  Google Scholar 

  43. Gong, L.L., S. Yang, H. Liu, W. Zhang, L.L. Ren, F.F. Han, et al. 2019. Anti-nociceptive and anti-inflammatory potentials of Akebia saponin D. European Journal of Pharmacology 845: 85–90.

    Article  CAS  PubMed  Google Scholar 

  44. Kwofie, S.K., C. Adobor, E. Quansah, J. Bentil, M. Ampadu, W.A. Miller 3rd., et al. 2020. Molecular docking and dynamics simulations studies of OmpATb identifies four potential novel natural product-derived anti-Mycobacterium tuberculosis compounds. Computers in Biology and Medicine 122: 103811.

    Article  CAS  PubMed  Google Scholar 

  45. Iqbal, N., H.M. Zubair, M.H. Almutairi, M. Abbas, M.F. Akhtar, L. Aleya, et al. 2022. Hepatoprotective effect of Cordia rothii extract against CCl4-induced oxidative stress via Nrf2–NFκB pathways. Biomedicine & Pharmacotherapy 156: 113840.

    Article  CAS  Google Scholar 

  46. Reiriz, A.B., G.K. Reolon, T. Preissler, J.O. Rosado, J.A.P. Henriques, R. Roesler, et al. 2006. Cancer chemotherapy and cognitive function in rodent models: Memory impairment induced by cyclophosphamide in mice. Clinical Cancer Research 12: 5000–5001.

    Article  CAS  PubMed  Google Scholar 

  47. Stringer, A.M., R.J. Gibson, R.M. Logan, J.M. Bowen, A.S. Yeoh, J. Burns, et al. 2007. Chemotherapy-induced diarrhea is associated with changes in the luminal environment in the DA rat. Experimental Biology and Medicine (Maywood, NJ) 232: 96–106.

    CAS  Google Scholar 

  48. Cinausero, M., G. Aprile, P. Ermacora, D. Basile, M.G. Vitale, V. Fanotto, et al. 2017. New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury. Frontiers in Pharmacology 8: 354.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Crohns, M., K. Liippo, M. Erhola, H. Kankaanranta, E. Moilanen, H. Alho, et al. 2009. Concurrent decline of several antioxidants and markers of oxidative stress during combination chemotherapy for small cell lung cancer. Clinical Biochemistry 42: 1236–1245.

    Article  CAS  PubMed  Google Scholar 

  50. Al-Asmari, A.K., A.Q. Khan, A.M. Al-Qasim, and Y. Al-Yousef. 2015. Ascorbic acid attenuates antineoplastic drug 5-fluorouracil induced gastrointestinal toxicity in rats by modulating the expression of inflammatory mediators. Toxicology Reports 2: 908–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kolli, V.K., P. Abraham, and S. Rabi. 2008. Methotrexate-induced nitrosative stress may play a critical role in small intestinal damage in the rat. Archives of Toxicology 82: 763–770.

    Article  CAS  PubMed  Google Scholar 

  52. Karagözoğlu, Ş, and M. Filiz Ulusoy. 2005. Chemotherapy: the effect of oral cryotherapy on the development of mucositis. Journal of Clinical Nursing 14: 754–765.

    Article  PubMed  Google Scholar 

  53. Carneiro-Filho, B.A., I.P. Lima, D.H. Araujo, M.C. Cavalcante, G.H. Carvalho, G.A. Brito, et al. 2004. Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. Digestive Diseases and Sciences 49: 65–72.

    Article  CAS  PubMed  Google Scholar 

  54. Stringer, A.M. 2013. Interaction between host cells and microbes in chemotherapy-induced mucositis. Nutrients 5: 1488–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sonis, S.T. 2004. The pathobiology of mucositis. Nature Reviews Cancer 4: 277–284.

    Article  CAS  PubMed  Google Scholar 

  56. Lang, W., M. Cheng, X. Zheng, Y. Zhao, Y. Qu, Z. Jia, et al. 2022. Forsythiaside A alleviates methotrexate-induced intestinal mucositis in rats by modulating the NLRP3 signaling pathways. International Immunopharmacology 103: 108466.

    Article  CAS  PubMed  Google Scholar 

  57. Naruhashi, K., M. Nadai, M. Nakao, N. Suzuki, T. Nabeshima, and T. Hasegawa. 2000. Changes in absorptive function of rat intestine injured by methotrexate. Clinical and Experimental Pharmacology & Physiology 27: 980–986.

    Article  CAS  Google Scholar 

  58. Fijlstra, M., H. Schierbeek, G. Voortman, K.Y. Dorst, J.B. van Goudoever, E.H. Rings, et al. 2012. Continuous enteral administration can enable normal amino acid absorption in rats with methotrexate-induced gastrointestinal mucositis. The Journal of Nutrition 142: 1983–1990.

    Article  CAS  PubMed  Google Scholar 

  59. Wu, J.T., and J.G. Kral. 2005. The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. The Journal of Surgical Research 123: 158–169.

    Article  CAS  PubMed  Google Scholar 

  60. Deplancke, B., and H.R. Gaskins. 2001. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. The American Journal of Clinical Nutrition 73: 1131S–1141S.

    Article  CAS  PubMed  Google Scholar 

  61. Ampadu, F.A., and E. Boakye-Gyasi. 2018. Antipleuritic and vascular permeability inhibition of the ethyl acetate-petroleum ether stem bark extract of Maerua angolensis DC (Capparaceae) in murine. International Journal of Inflammation 2018: 6123094.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ahmed, W., A. Zaki, and T. Nabil. 2015. Prevention of methotrexate-induced nephrotoxicity by concomitant administration of garlic aqueous extract in rat. Turkish Journal of Medical Sciences 45: 507–516.

    Article  CAS  PubMed  Google Scholar 

  63. Lee, S.W., K.I. Jung, Y.W. Kim, H.D. Jung, H.S. Kim, and J.P. Hong. 2007. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats. International Journal of Radiation Oncology*Biology*Physics 67: 1172–1178.

    Article  CAS  PubMed  Google Scholar 

  64. Yao, C., and S. Narumiya. 2019. Prostaglandin-cytokine crosstalk in chronic inflammation. British Journal of Pharmacology 176: 337–354.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors thank and acknowledge their respective universities and institutes.

Author information

Authors and Affiliations

Authors

Contributions

M.A., investigation, methodology, and writing, original draft; H.N., synthesis of the compound; M.F.A., J.A., M.N., and A.S., review and editing; R.A., M.A., and S.K., data analysis; T.M., J.W.H., review and editing; H.M.Z., research idea, conceptualization, staining analysis, review editing, and supervision. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Hafiz Muhammad Zubair.

Ethics declarations

Ethics Approval and Consent to Participate

All the experimental protocols and animal handling were conducted in compliance with the recommendations of the Institutional Research Ethics Committee, the University of Lahore, Lahore, Pakistan (approval number: IREC-2022-27).

Consent for Publication

All authors have read and agreed with the final paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awais, M., Zubair, H.M., Nadeem, H. et al. Benzimidazole Derivative (N-{4-[2-(4-Methoxyphenyl)-1H-Benzimidazole-1-Sulfonyl] Phenyl} Acetamide) Ameliorates Methotrexate-Induced Intestinal Mucositis by Suppressing Oxidative Stress and Inflammatory Markers in Mice. Inflammation (2024). https://doi.org/10.1007/s10753-024-01969-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01969-9

KEY WORDS

Navigation