Skip to main content

Advertisement

Log in

Macrophage-Derived Extracellular DNA Initiates Heterotopic Ossification

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Heterotopic ossification (HO) severely affects people's lives; however, its pathological mechanism remains poorly understood. Although extracellular DNA (ecDNA) has been shown to play important roles in pathological calcification, its effects in HO development and progression remain unknown. The in vivo rat Achilles tendon injury model and in vitro collagen I calcification model were used to evaluate the effects of ecDNA in the ectopic calcifications and the main cell types involved in those pathological process. Histology, immunofluorescent staining, reverse transcriptase-polymerase chain reaction analysis and micro-computed tomography were used to identify the distribution of macrophage-derived ecDNA and elucidate their roles in HO. The results showed that the amount of ecDNA and ectopic calcification increased significantly and exhibited a strong correlation in the injured tendons of HO model compared with those of the controls, which was accompanied by a significantly increased number of M2 macrophages in the injured tendon. During in vitro co-culture experiments, M2 macrophages calcified the reconstituted type I collagen and ectopic bone collected from the injured tendons of HO rats, while those effects were inhibited by deoxyribonuclease. More importantly, deoxyribonuclease reversed the pathological calcification in the injured rat tendon HO model. The present study showed that ecDNA from M2 macrophages initiates pathological calcification in HO, and the elimination of ecDNA might be developed into a clinical strategy to prevent ectopic mineralization diseases. The use of deoxyribonuclease for the targeted degradation of ecDNA at affected tissue sites provides a potential solution to treat diseases associated with ectopic mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

DATA AVAILABILITY

The datasets for this study can be found in the the article/Supplementary Material, and further inquiries can be directed to the corresponding authors.

References

  1. Bohner, M., Y. Maazouz, M.P. Ginebra, P. Habibovic, J.G. Schoenecker, H. Seeherman, et al. 2022. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomaterialia 145: 1–24. https://doi.org/10.1016/j.actbio.2022.03.057.

    Article  CAS  PubMed  Google Scholar 

  2. Li, L., Y. Jiang, H. Lin, H. Shen, J. Sohn, P.G. Alexander, et al. 2019. Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production. Journal of Orthopaedic Translation 18: 142–153. https://doi.org/10.1016/j.jot.2019.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li, L., and R.S. Tuan. 2020. Mechanism of traumatic heterotopic ossification: In search of injury-induced osteogenic factors. Journal of Cellular and Molecular Medicine 24 (19): 11046–11055. https://doi.org/10.1111/jcmm.15735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu, X., Z. Sun, F. Li, C. Jiang, W. Yan, and Y. Sun. 2021. Burn-induced heterotopic ossification from incidence to therapy: Key signaling pathways underlying ectopic bone formation. Cellular & Molecular Biology Letters 26 (1): 34. https://doi.org/10.1186/s11658-021-00277-6.

    Article  CAS  Google Scholar 

  5. Hwang, C.D., C.A. Pagani, J.H. Nunez, M. Cherief, Q. Qin, M. Gomez-Salazar, et al. 2022. Contemporary perspectives on heterotopic ossification. JCI Insight 7(14):e158996. https://doi.org/10.1172/jci.insight.158996.

  6. Felix-Ilemhenbhio, F., G.A.E. Pickering, E. Kiss-Toth, and J.M. Wilkinson. 2022. Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. International Journal of Molecular Sciences 23 (13): 6983. https://doi.org/10.3390/ijms23136983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baker, R., K.D. Rogers, N. Shepherd, and N. Stone. 2010. New relationships between breast microcalcifications and cancer. British Journal of Cancer 103 (7): 1034–1039. https://doi.org/10.1038/sj.bjc.6605873. (Epub 2010 Sep 14).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muñoz, L.E., S. Boeltz, R. Bilyy, C. Schauer, A. Mahajan, N. Widulin, et al. 2019. Neutrophil Extracellular Traps Initiate Gallstone Formation. Immunity 51 (3): 443-450.e4. https://doi.org/10.1016/j.immuni.2019.07.002.

    Article  CAS  PubMed  Google Scholar 

  9. Zernecke, A., and K.T. Preissner. 2016. Extracellular Ribonucleic Acids (RNA) Enter the Stage in Cardiovascular Disease. Circulation Research 118 (3): 469–479. https://doi.org/10.1161/CIRCRESAHA.115.307961.

    Article  CAS  PubMed  Google Scholar 

  10. Zazzeroni, L., G. Faggioli, and G. Pasquinelli. 2018. Mechanisms of Arterial Calcification: The Role of Matrix Vesicles. European Journal of Vascular and Endovascular Surgery 55 (3): 425–432. https://doi.org/10.1016/j.ejvs.2017.12.009.

    Article  PubMed  Google Scholar 

  11. Shen, M.J., K. Jiao, C.Y. Wang, H. Ehrlich, M.C. Wan, D.X. Hao, et al. 2022. Extracellular DNA: A Missing Link in the Pathogenesis of Ectopic Mineralization. Advance Science (Weinh) 9(5):e2103693. https://doi.org/10.1002/advs.202103693.

  12. Wang, X., F. Li, L. Xie, J. Crane, G. Zhen, Y. Mishina, et al. 2018. Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice. Nature Communications 9 (1): 551. https://doi.org/10.1038/s41467-018-02988-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, Y., X. Wang, D. Zhou, W. Zhou, F. Dai, and H. Lin. 2021. Macrophages in heterotopic ossification: From mechanisms to therapy. NPJ Regenerative Medicine 6 (1): 70. https://doi.org/10.1038/s41536-021-00178-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sorkin, M., A.K. Huber, C. Hwang, W.F. Carson 4th., R. Menon, J. Li, et al. 2020. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nature Communications 11 (1): 722. https://doi.org/10.1038/s41467-019-14172-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Franken, L., M. Schiwon, and C. Kurts. 2016. Macrophages: Sentinels and regulators of the immune system. Cellular Microbiology 18 (4): 475–487. https://doi.org/10.1111/cmi.12580.

    Article  CAS  PubMed  Google Scholar 

  16. Locati, M., G. Curtale, and A. Mantovani. 2020. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annual Review of Pathology: Mechanisms of Disease 15: 123–147. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.

    Article  CAS  Google Scholar 

  17. Zhang J, Wang L, Chu J, Ao X, Jiang T, Bin Yan, et al. 2020. Macrophage-derived neurotrophin-3 promotes heterotopic ossification in rats. Laboratory Investment 100(5):762–776. https://doi.org/10.1038/s41374-019-0367-x.

  18. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4): 402–408. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  19. Coscas, R., M. Bensussan, M.P. Jacob, L. Louedec, Z. Massy, J. Sadoine, et al. 2017. Free DNA precipitates calcium phosphate apatite crystals in the arterial wall in vivo. Atherosclerosis 259: 60–67. https://doi.org/10.1016/j.atherosclerosis.2017.03.005.

    Article  CAS  PubMed  Google Scholar 

  20. Shen, M.J., C.Y. Wang, D.X. Hao, J.X. Hao, Y.F. Zhu, X.X. Han, et al. 2022. Multifunctional Nanomachinery for Enhancement of Bone Healing. Advance Material 34(9):e2107924. https://doi.org/10.1002/adma.202107924.

  21. Sun, T., A. Mirzoev, V. Minhas, N. Korolev, A.P. Lyubartsev, and L. Nordenskiöld. 2019. A multiscale analysis of DNA phase separation: From atomistic to mesoscale level. Nucleic Acids Research 47 (11): 5550–5562. https://doi.org/10.1093/nar/gkz377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, X.G., X.X. Jing, P. Liu, M.C. Pan, Z. Liu, X.P. Dai, et al. 2020. DNA Framework-Encoded Mineralization of Calcium Phosphate. Chemistry 472–485 . https://doi.org/10.1016/j.chempr.2019.12.003.

  23. Mahamid, J., B. Aichmayer, E. Shimoni, R. Ziblat, C. Li, S. Siegel, et al. 2010. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. The Proceedings of the National Academy of Sciences 107 (14): 6316–6321. https://doi.org/10.1073/pnas.0914218107.

    Article  Google Scholar 

  24. Kluever, A.K., A. Braumandl, S. Fischer, K.T. Preissner, and E. Deindl. 2019. The Extraordinary Role of Extracellular RNA in Arteriogenesis, the Growth of Collateral Arteries. International Journal of Molecular Sciences 20 (24): 6177. https://doi.org/10.3390/ijms20246177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gong, T., L. Liu, W. Jiang, and R. Zhou. 2020. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nature Reviews Immunology 20 (2): 95–112. https://doi.org/10.1038/s41577-019-0215-7.

    Article  CAS  PubMed  Google Scholar 

  26. Lasch, M., E.C. Kleinert, S. Meister, K. Kumaraswami, J.I. Buchheim, T. Grantzow, et al. 2019. Extracellular RNA released due to shear stress controls natural bypass growth by mediating mechanotransduction in mice. Blood 134 (17): 1469–1479. https://doi.org/10.1182/blood.2019001392.

    Article  PubMed  Google Scholar 

  27. Li, P., Z. Hao, J. Wu, C. Ma, Y. Xu, J. Li, et al. 2021. Comparative Proteomic Analysis of Polarized Human THP-1 and Mouse RAW264.7 Macrophages. Frontiers in Immunology 12:700009. https://doi.org/10.3389/fimmu.2021.700009.

  28. Kuznetsova, T., K.H.M. Prange, C.K. Glass, and M.P.J. de Winther. 2020. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nature Reviews. Cardiology 17 (4): 216–228. https://doi.org/10.1038/s41569-019-0265-3.

    Article  CAS  PubMed  Google Scholar 

  29. Kang, M., C.C. Huang, Y. Lu, S. Shirazi, P. Gajendrareddy, S. Ravindran, et al. 2020. Bone regeneration is mediated by macrophage extracellular vesicles. Bone 141:115627. https://doi.org/10.1016/j.bone.2020.115627.

  30. Yin, C., Q. Zhao, W. Li, Z. Zhao, J. Wang, T. Deng, et al. 2020. Biomimetic anti-inflammatory nano-capsule serves as a cytokine blocker and M2 polarization inducer for bone tissue repair. Acta Biomaterialia 102: 416–426. https://doi.org/10.1016/j.actbio.2019.11.025.

    Article  CAS  PubMed  Google Scholar 

  31. Witherel, C.E., K. Sao, B.K. Brisson, B. Han, S.W. Volk, R.J. Petrie, et al. 2021. Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages. Biomaterials 269:120667. https://doi.org/10.1016/j.biomaterials.2021.120667.

  32. Olmsted-Davis, E., J. Mejia, E. Salisbury, Z. Gugala, and A.R. Davis. 2021. A Population of M2 Macrophages Associated With Bone Formation. Frontiers in Immunology 12:686769. https://doi.org/10.3389/fimmu.2021.686769.

  33. Kan, C., N. Ding, J. Yang, Z. Tan, T.L. McGuire, H. Lu, et al. 2019. BMP-dependent, injury-induced stem cell niche as a mechanism of heterotopic ossification. Stem Cell Research & Therapy 10 (1): 14. https://doi.org/10.1186/s13287-018-1107-7.

    Article  CAS  Google Scholar 

  34. Peterson, J.R., O.N. Eboda, R.C. Brownley, K.E. Cilwa, L.E. Pratt, S. De La Rosa, et al. 2015. Effects of aging on osteogenic response and heterotopic ossification following burn injury in mice. Stem Cells and Development 24 (2): 205–213. https://doi.org/10.1089/scd.2014.0291.

    Article  CAS  PubMed  Google Scholar 

  35. Redzic, J.S., L. Balaj, K.E. van der Vos, and X.O. Breakefield. 2014. Extracellular RNA mediates and marks cancer progression. Seminars in Cancer Biology 28: 14–23. https://doi.org/10.1016/j.semcancer.2014.04.010.

    Article  CAS  PubMed  Google Scholar 

  36. Schober, A., M. Nazari-Jahantigh, and C. Weber. 2015. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nature Reviews. Cardiology 12 (6): 361–374. https://doi.org/10.1038/nrcardio.2015.38.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to thank all of the participants for their time and effort.

Funding

This work was supported by grants 81870787, 82170978, and 81870805 from the National Nature Science Foundation of China, Distinguished Young Scientists Funds of Shannxi Province (2021JC-34), grant 2020TD-033 from the Shaanxi Key Scientific and Technological Innovation Team.

Author information

Authors and Affiliations

Authors

Contributions

XH and CG contributed equally to the experimental performing, data acquisition and analysis and manuscript drafting. WL and JY contributed to animal experiments. WQ and HX contributed to data analysis and interpretation. JG and NL contributed to immunofluorescence experiments. ZG, WZ and YF contributed to data interpretation. KJ contributed to the study conception and design, data interpretation and manuscript revision. All authors have read and approved the current version of the manuscript.

Corresponding author

Correspondence to Kai Jiao.

Ethics declarations

Ethics Approval

Animal experiments were performed in accordance with National Animal Protection and Use Guidelines and were approved by the Institutional Animal Care and Use Committee of the Fourth Military Medical University (ethics approval number: 20220906).

Consent for Publication

The manuscript has been approved by all authors for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 265 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Gao, C., Lu, W. et al. Macrophage-Derived Extracellular DNA Initiates Heterotopic Ossification. Inflammation 46, 2225–2240 (2023). https://doi.org/10.1007/s10753-023-01873-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01873-8

KEY WORDS

Navigation