Skip to main content

Advertisement

Log in

Circulating MiRNAs Are Associated With Low-grade Systemic Inflammation and Leptin Levels in Older Adults

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammaging refers to the low-grade systemic inflammation that occurs with aging present in chronic non-communicable diseases. MicroRNAs (miRNAs) are potential biomarkers for these diseases in older adults. This study aimed to assess the expression of 21 circulating miRNAs and their associations with inflammatory biomarkers in older adults. This cross-sectional study was performed with 200 individuals participating in ISA-Nutrition. The systemic low-grade inflammation score (SIS) was calculated from the plasma concentration of 10 inflammatory biomarkers. Circulating miRNA expression was assessed using the Fluidigm method. Wilcoxon-Mann–Whitney test was employed to determine differences in SIS among groups distributed according to sex and presence of MetS. Spearman’s correlation was used to estimate correlations among SIS, leptin levels, miRNA expression, and variables of interest. Analyses were performed using software R version 4.2.3, with a significance level of 0.05. The final sample consisted of 193 individuals with a mean age of 69.1 (SE = 0.5) years, being 64.7% individuals with metabolic syndrome (MetS). Positive correlations were observed between leptin concentration and metabolic risk factors, and leptin concentration was higher in individuals with MetS compared to those without MetS. The expression of 15 circulating miRNAs was negatively correlated with leptin concentration. GLMs showed negative associations between miRNAs (miR-15a, miR-16, miR-223, miR-363, miR-532), leptin, and/or SIS values; and only miR-21 showed positive association with SIS values. The results suggest the presence of peripheral leptin resistance associated with low-grade inflammation and plasma expression of miRNAs in older adults. These findings suggest the potential role of miRNAs as biomarkers for cardiometabolic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

References

  1. Van Greevenbroek, M.M., C.G. Schalkwjk, and C.D. Stehouwer. 2013. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: Causes and consequences. Netherlands Journal of Medicine 71: 174–187.

    PubMed  Google Scholar 

  2. Weisberg, S.P., D. McCan, M. Desai, M. Rosenbaum, R.L. Leibel, and A.W. Ferrante Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI19246.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, L., R. Chen, H. Wang, and F. Liang. 2015. Mechanisms Linking Inflammation to Insulin Resistance. International Journal of Endocrinology. https://doi.org/10.1155/2015/508409.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Awan, Z., and J. Genest. 2015. Inflammation modulation and cardiovascular disease prevention. European Journal of Preventive Cardiology. https://doi.org/10.1177/2047487314529350.

    Article  PubMed  Google Scholar 

  5. Franceschi, C., P. Garagnani, P. Parini, C. Giuliani, and A. Santoro. 2018. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nature Reviews. https://doi.org/10.1038/s41574-018-0059-414.

    Article  PubMed  Google Scholar 

  6. Gems, D., and L. Partridge. 2013. Genetics of longevity in model organisms: Debates and paradigm shifts. Annual Review of Physiology. https://doi.org/10.1146/annurev-physiol-030212-183712.

    Article  PubMed  Google Scholar 

  7. López-Otín, C., M.A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The Hallmarks of Aging. Cell. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brasil, Ministério da Saúde. 2011. Plano de ações estratégicas para o enfrentamento das doenças crônicas não transmissíveis (DCNT) no Brasil 2011–2022. Ministério da Saúde. Secretaria de Vigilância Epidemiológica. Brasília (DF).

  9. Duncan, B.B., D. Chor, E.M.L. Aquino, I.M. Bensenor, J.G. Mill, M.I. Schmidt, P.A. Lotufo, A. Vigo, and S.M. Barreto. 2012. Doenças crônicas não transmissíveis no Brasil: Prioridade para enfrentamento e investigação. Revista de Saúde Pública. https://doi.org/10.1590/S0034-89102012000700017.

    Article  PubMed  Google Scholar 

  10. World Health Organization. 2018. Noncommunicable Diseases: Country Profiles 2018. [s.l: s.n.].

  11. Scarpace, P.J., Matheny, M., Moore, R.L., and Tümer N. 2000. Impaired leptin responsiveness in aged rats. Diabetes. https://doi.org/10.2337/diabetes.49.3.431.

    Article  PubMed  Google Scholar 

  12. Canale, M.P., S. Manca di Villahermosa, G. Martino, V. Rovella, A. Noce, A. De Lorenzo, and N. Di Daniele. 2013. Obesity-related metabolic syndrome: Mechanisms of sympathetic overactivity. International Journal of Endocrinology. https://doi.org/10.1155/2013/865965.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Myers, M.G., Cowley, M.A., and Münzberg, H. Mechanisms of leptin action and leptin resistance. Annual Review of Physiology, 208. https://doi.org/10.1146/annurev.physiol.70.113006.100707.

  14. Barba, G., Russo, O., Siani, A., Iacone, R., Farinaro, E., Gerardi, M.C., Russo, P., Della Valle, and Strazzullo, P. 2003. Plasma leptin and blood pressure in men: Graded association independent of body mass and fat pattern. Obesity Research. https://doi.org/10.1038/oby.2003.25.

    Article  PubMed  Google Scholar 

  15. Ortega, F.J., J. Mercaderm, and M, Catalánm V., Moreno-Navarrete, J.M., Pueyo, N., and Sabate, R.M. 2013. Targeting the Circulating MicroRNA Signature of Obesity. Clinical Chemistry. https://doi.org/10.1373/clinchem.2012.195776.

    Article  PubMed  Google Scholar 

  16. Rong, Y., W. Bao, Z. Shanm, J. Liu, X. Yu, S. Xia, H. Gao, X. Wang, P. Yao, F.B. Hu, and L. Liu. 2013. Increased MicroRNA-146a Levels in Plasma of Patients with Newly Diagnosed Type 2 Diabetes Mellitus. PLoS ONE. https://doi.org/10.1371/journal.pone.0073272.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y., Y. Li, X. Wang, D. Zhang, H. Zhang, Q. Wu, Y. He, J. Wang, L. Zhang, H. Xia, J. Yan, X. Li, and H. Ying. 2013. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia. https://doi.org/10.1007/s00125-013-2996-8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Simionescu, N., L.S. Niculescu, G.M. Sanda, D. Margina, and A.V. Sima. 2014. Analysis of circulating microRNAs that are specifically increased in hyperlipidemic and/or hyperglycemic sera. Molecular Biology Reports. https://doi.org/10.1007/s11033-014-3449-2.

    Article  PubMed  Google Scholar 

  19. Cruz, K.J.C., A.R.S. Oliveira, J.B.S. Morais, J.S. Severo, and D.N. Marreiro. 2017. Role of microRNAs on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Nutrition. https://doi.org/10.1016/j.nut.2016.10.003.

    Article  PubMed  Google Scholar 

  20. Keller, A., P. Leidinger, A. Bauer, et al. 2011. Toward the blood-borne miRNome of human diseases. Nature Methods. https://doi.org/10.1038/nmeth.1682.

    Article  PubMed  Google Scholar 

  21. Fisberg, R.M., C.H. Sales, M.M. Fontanelli, J.L. Pereira, M.C.G.P. Alves, M.M.L. Escuder, C.L.G. César, and M. Goldbaum. 2018. 2015 Health Survey of São Paulo with a focus on Nutrition: Rationale, design, and procedures. Nutrients. https://doi.org/10.3390/nu10020169.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pan American Health Organization (PAHO). 2002. XXXVI Reunión del Comitê Asesor de Investigaciones en Salud – Encuestra Multicêntrica – Salud Beinestar y Envejecimeiento (SABE) en América Latina y el Caribe – Informe preliminar 2002 (online). http://www.opas.org/program/sabe.html. Accessed 17 March 2023.

  23. World Health Organization (WHO). 2008. Waist Circumference and Waist-Hip Ratio 2008. World Health Organization (online). https://www.who.int/publications/i/item/9789241501491. Accessed 17 March 2023.

  24. International Diabetes Federation. 2006. IDF Consensus Worldwide Definition of the Metabolic Syndrome. International Diabetes Federation (online). https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html. Accessed 18 March 2023.

  25. Geloneze, B., A.C.J. Vasques, C.F.C. Stabe, J.C. Pareja, L.E.F.P.L. Rosado, E.C. Queiroz, and M.A. Tambascia. 2009. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arquivos Brasileiros de Endocrinologia & Metabologia. https://doi.org/10.1590/S0004-27302009000200020.

    Article  Google Scholar 

  26. Norde, M.M., R.M. Fisberg, D.M.L. Marchioni, and M.M. Rogero. 2020. Systemic low-grade inflammation-associated lifestyle, diet, and genetic factors: A population-based cross-sectional study. Nutrition. https://doi.org/10.1016/j.nut.2019.110596.

    Article  PubMed  Google Scholar 

  27. Tabung, F.K., S.A. Smith-Warner, J.E. Chavarro, K. Wu, C.S. Fuchs, F.B. Hu, A.T. Chan, W.C. Willett, and E.L. Giovannucci. 2016. Development and Validation of an Empirical Dietary Inflammatory Index. Journal of Nutrition. https://doi.org/10.3945/jn.115.228718.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lumley, T., and A.J. Scott. 2013. Two-sample rank tests under complex sampling. Biometrika. https://doi.org/10.1093/biomet/ast027.

    Article  Google Scholar 

  29. Lumley, T., and A.J. Scott. 2017. Fitting Regression Models to Survey Data. Statistical Science. https://doi.org/10.1214/16-STS605.

    Article  Google Scholar 

  30. Cavanaugh, J.E., and A.A. Neath. 2019. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics. https://doi.org/10.1002/wics.1460.

    Article  Google Scholar 

  31. Dziak, J.J., D.L. Coffman, S.T. Lanza, R. Li, and L.S. Jermiin. 2020. Sensitivity and specificity of information criteria. Briefings in bioinformatics. https://doi.org/10.1093/bib/bbz016.

    Article  PubMed  Google Scholar 

  32. Shieh, G. 2005. On power and sample size calculations for Wald tests in generalized linear models. Journal of Statistical Planning and Inference. https://doi.org/10.1016/j.jspi.2003.09.017.

    Article  Google Scholar 

  33. R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (online). https://www.R-project.org/. Accessed 20 April 2023.

  34. Lumley, T. 2020. "Survey: analysis of complex survey samples". R package version 4.0.

  35. León-Pedroza, J.I., L.A. González-Tapia, E. del Olmo-Gil, D. Castellanos-Rodríguez, G. Escobedo, and A. González-Chávez. 2014. Low-grade systemic inflammation and the development of metabolic diseases: From the molecular evidence to the clinical practice. Cirugia y Cirujanos. https://doi.org/10.1016/j.circir.2015.05.041.

    Article  Google Scholar 

  36. Sahu, A. 2004. Minireview: A hypothalamic role in energy balance with special emphasis on leptin. Endocrinology. https://doi.org/10.1210/en.2004-0032.

    Article  PubMed  Google Scholar 

  37. Steiner, A.A., and A.A. Romanovsky. 2007. Leptin: At the crossroads of energy balance and systemic inflammation. Progress in Lipid Research. https://doi.org/10.1016/j.plipres.2006.11.001.

    Article  PubMed  Google Scholar 

  38. Myers, M.G., Jr., S.B. Heymsfield, C. Haft, B.B. Kahn, M. Laughlin, R.L. Leibel, M.H. Tschöp, and J.A. Yanovski. 2012. Challenges and opportunities of defining clinical leptin resistance. Cell Metabolism. https://doi.org/10.1016/j.cmet.2012.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hellström, L., H. Wahrenberg, K. Hruska, S. Reynisdottir, and P. Arner. 2000. Mechanisms behind gender differences in circulating leptin levels. Journal of Internal Medicine. https://doi.org/10.1046/j.1365-2796.2000.00678.x.

    Article  PubMed  Google Scholar 

  40. Mazusaki, H., Y. Ogawa, N. Isse, N. Satoh, T. Okazaki, M. Shigemoto, K. Mori, N. Tamura, K. Hosoda, and Y. Yoshimasa. 1995. Human obese gene expression: Adipocyte specific expression and regional differences in the adipose tissue. Diabetes. https://doi.org/10.2337/diab.44.7.855.

    Article  Google Scholar 

  41. Montague, C.T., J.B. Prins, L. Sanders, J. Zhang, C.P. Sewter, J. Digby, C.D. Byrne, and S. O’Rahilly. 1998. Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes. https://doi.org/10.2337/diabetes.47.9.1384.

    Article  PubMed  Google Scholar 

  42. Casabiell, X., V. Piniero, R. Peino, M. Lage, J. Camiña, R. Gallego, L.G. Vallejo, C. Dieguez, and F.F. Casanueva. 1998. Gender differences in both spontaneous and stimulated leptin secretion by human omental adipose tissue in vitro: Dexamethasone and estradiol stimulate leptin release in women, but not in men. Journal of Clinical Endocrinology and Metabolism. https://doi.org/10.1210/jcem.83.6.4849.

    Article  PubMed  Google Scholar 

  43. Pineiro, V., X. Casabiell, R. Peinó, M. Lage, J.P. Camiña, C. Menendez, J. Baltar, C. Dieguez, and F. Casanueva. 1999. Dihydrotestosterone, stanozolol, androstenedione and dehydroepiandrosterone sulphate inhibit leptin secretion in female but not in male samples of omental adipose tissue in vitro: Lack of effect of testosterone. Journal of Endocrinology. https://doi.org/10.1677/joe.0.1600425.

    Article  PubMed  Google Scholar 

  44. Rosembaum, M., and R. Leibel. 1999. Role of gonadal steroids in the sexual dimorphism in body composition and circulating concentrations of leptin. Journal of Clinical Endocrinology and Metabolism. https://doi.org/10.1210/jcem.84.6.5787.

    Article  Google Scholar 

  45. López-Jaramillo, P., D. Gómez-Arbeláez, J. López-López, C. López-López, J. Martínez-Ortega, A. Gómez-Rodríguez, and S. Triana-Cubillos. 2014. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Hormone Molecular Biology and Clinical Investigation. https://doi.org/10.1515/hmbci-2013-0053.

    Article  PubMed  Google Scholar 

  46. Kumar, R., K. Mal, M.K. Razaq, M. Magsi, M.K. Memon, S. Memon, M.N. Afroz, H.F. Siddiqui, and A. Rizwan. 2020. Association of Leptin With Obesity and Insulin Resistance. Cureus. https://doi.org/10.7759/cureus.12178.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chan, C.B., D. De Leo, J.W. Joseph, T.S. McQuaid, X.F. Ha, F. Xu, R.G. Tsushima, P.S. Pennefather, A.M. Salapatek, and M.B. Wheeler. 2001. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: Mechanism of action. Diabetes. https://doi.org/10.2337/diabetes.50.6.1302.

    Article  PubMed  Google Scholar 

  48. Sun, L.L., B.G. Jiang, W.T. Li, J.J. Zou, Y.Q. Shi, and Z.M. Liu. 2011. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Research and Clinical Practice. https://doi.org/10.1016/j.diabres.2010.11.006.

    Article  PubMed  Google Scholar 

  49. Ma, E., Y. Fu, and T. Garvey. 2018. Relationship of Circulating miRNAs with Insulin Sensitivity and Associated Metabolic Risk Factors in Humans. Metabolic Syndrome and Related Disorders. https://doi.org/10.1089/met.2017.0101.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee, D.E., J.L. Brown, M.E. Rosa, L.A. Brown, R.A. Perry Jr., M.P. Wiggs, M.I. Nilsson, S.F. Crouse, J.D. Fluckey, T.A. Washington, and N.P. Greene. 2016. microRNA-16 Is Downregulated During Insulin Resistance and Controls Skeletal Muscle Protein Accretion. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.25476.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Heyn, G.S., L.H. Corrêa, and K.G. Magalhães. 2020. The Impact of Adipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2020.563816.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sekar, D., V.I. Hairul Islam, K. Thirugnanasambantham, and S. Saravanan. 2014. Relevance of miR-21 in HIV and non-HIV-related lymphomas. Tumour Biology. https://doi.org/10.1007/s13277-014-2068-9.

    Article  PubMed  Google Scholar 

  53. Keller, P., V. Gburcik, N. Petrovic, I.J. Gallagher, J. Nedergaard, B. Cannon, and J.A. Timmons. 2011. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocrine Disorders. https://doi.org/10.1186/1472-6823-11-7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guglielmi, V., M. D’Adamo, R. Menghini, M. Cardellini, P. Gentileschi, M. Federici, and P. Sbraccia. 2017. MicroRNA 21 is up-regulated in adipose tissue of obese diabetic subjects. Nutr Healthy Aging. https://doi.org/10.3233/NHA-160020.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jeong Kim, Y., S. Jin Hwang, Y. Chan Bae, and J. Sup Jung. 2009. MiR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. https://doi.org/10.1002/stem.235.

    Article  Google Scholar 

  56. Richart, A., X. Loyer, T. Néri, K. Howangyin, C.L. Guérin, A. Ngkelo, W. Bakker, I. Zlatanova, M. Rouanet, J. Vilar, B. Lévy, M. Rothenberg, Z. Mallat, M. Pucéat, and J.S. Silvestre. 2014. MicroRNA-21 coordinates human multipotent cardiovascular progenitors therapeutic potential. Stem Cells. https://doi.org/10.1002/stem.1789.

    Article  PubMed  Google Scholar 

  57. Lhamyani, S., A.-M. Gentile, R.M. Giráldez-Pérez, M. Feijóo-Cuaresma, S.Y. Romero-Zerbo, M. Clemente-Postigo, H. Zayed, W.O. Olivera, F.J. Bermúdez-Silva, J. Salas, C.L. Gómez, N. Hajji, G.O. Fuster, F.J. Tinahones, and R. El Bekay. 2020. Molecular Therapy - Nucleic Acids. https://doi.org/10.1101/2020.10.27.20219915.

    Article  Google Scholar 

  58. Zhuang, G., C. Meng, X. Guo, P.S. Cheruku, L. Shi, H. Xu, and H. Li. 2012. A novel regulator of macrophage activation: MiR-223 in obesity-associated adipose tissue inflammation. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.111.087817.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wen, D., P. Qiao, and L. Wang. 2015. Circulating microRNA-223 as a potential biomarker for obesity. Obesity Research & Clinical Practice. https://doi.org/10.1016/j.orcp.2015.01.006.

    Article  Google Scholar 

  60. Improta-Caria, A.C., Sousa, R.A.L., Roever, L., Fernandes, T., Oliveira, E.M., Aras Júnior, R., and Souza, R.S.F. 2022. MicroRNAs in type 2 diabetes mellitus: potential role of physical exercise. Reviews in Cardiovascular Medicine. https://doi.org/10.31083/j.rcm2301029.

  61. Chakraborty, C., C.G.P. Doss, S. Bandyopadhyay, and G. Agoramoorthy. 2014. Influence of miRNA in insulin signaling pathway and insulin resistance: Micro-molecules with a major role in type-2 diabetes. Wiley Interdisciplinary Reviews. https://doi.org/10.1002/wrna.1240.

    Article  PubMed  Google Scholar 

  62. Chen, L., J. Cui, J. Hou, J. Long, C. Li, and L. Liu. 2014. A novel negative regulator of adipogenesis: MicroRNA-363. Stem Cells. https://doi.org/10.1002/stem.1549.

    Article  PubMed  Google Scholar 

  63. Linhart, H.G., K. Ishimura-Oka, F. DeMayo, T. Kibe, D. Repka, B. Poindexter, R.J. Bick, and G.J. Darlington. 2001. C/EBPalpha is required for differentiation of white, but not brown, adipose tissue. The Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.211416898.

    Article  PubMed  Google Scholar 

  64. Tang, Q.Q., and M.D. Lane. 2012. Adipogenesis: From stem cell to adipocyte. Annual Review of Biochemistry. https://doi.org/10.1146/annurev-biochem-052110-115718.

    Article  PubMed  Google Scholar 

  65. Iacomino, G., and A. Siani. 2017. Role of microRNAs in obesity and obesity-related diseases. Genes & Nutrition. https://doi.org/10.1186/s12263-017-0577-z.

    Article  Google Scholar 

  66. Ortega, F.J., J.M. Mercader, V. Catalán, J.M. Moreno-Navarrete, N. Pueyo, M. Sabater, J. Gómez-Ambrosi, R. Anglada, J.A. Fernández-Formoso, W. Ricart, G. Frühbeck, and J.M. Fernández-Real. 2013. Targeting the Circulating MicroRNA Signature of Obesity. Clinical Chemistry. https://doi.org/10.1373/clinchem.2012.195776.

    Article  PubMed  Google Scholar 

  67. Zhong, Z., W. Su, and H. Chen. 2021. MicroRNA-532-5p regulates oxidative stress and insulin secretion damage in high glucose-induced pancreatic β cells by downregulating the expression levels of CCND1. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2021.12433.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Taneera, J., J. Fadista, E. Ahlqvist, M. Zhang, N. Wierup, E. Renström, and L. Groop. 2013. Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Molecular and Cellular Endocrinology. https://doi.org/10.1016/j.mce.2013.05.003.

    Article  PubMed  Google Scholar 

  69. Shen, J., and B. Zhu. 2018. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2018.8804.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This paper was supported by the São Paulo Research Foundation – FAPESP (Grant 2020/03104–5 | Grant 2019/22934–1 | Grant 2017/05125–7); National Council for Scientific and Technological Development – CNPq (Grant 150834/2020–9). The funding agencies’ had no role in the study design, collection, analysis, interpretation of data, writing of the report, or decision to submit the article for publication.

Funding

This paper was supported by the São Paulo Research Foundation—FAPESP (Grant 2020/03104–5 | Grant 2019/22934–1); National Council for Scientific and Technological Development – CNPq (Grant 150834/2020–9). The sponsors had no role in the study design, collection, analysis, interpretation of data, writing of the report, or decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Gabrielli Barbosa de Carvalho], [Marcelo Macedo Rogero]; Methodology: [Gabrielli Barbosa de Carvalho], [Marcelo Macedo Rogero]; Formal analysis and investigation: [Gabrielli Barbosa de Carvalho], [Flávia Mori Sarti], [Sadraque Enéas de Figueirêdo Lucena]; Writing – original draft preparation: [Gabrielli Barbosa de Carvalho]; Writing – review and editing: [Paula Nascimento Brandão-Lima], [Tanyara Baliani Payolla], [Sadraque Enéas de Figuerêdo Lucena] [Flávia Mori Sarti], [Regina Mara Fisberg], [Marcelo Macedo Rogero]. All authors have read and approved the version of the paper.

Corresponding author

Correspondence to Marcelo M. Rogero.

Ethics declarations

Ethics Approval

This study was approved by the Research Ethics Committee of the School of Public Health of the University of São Paulo (# 49221121.4.0000.5421 and # 30848914.7.0000.5421 for Isa-Nutrition). Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, G.B., Brandão-Lima, P.N., Payolla, T.B. et al. Circulating MiRNAs Are Associated With Low-grade Systemic Inflammation and Leptin Levels in Older Adults. Inflammation 46, 2132–2146 (2023). https://doi.org/10.1007/s10753-023-01867-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01867-6

KEY WORDS

Navigation