Skip to main content

Advertisement

Log in

Cryptococcus neoformans in Association with Dermatophagoides pteronyssinus has Pro- (IL-6/STAT3 Overproduction) and Anti-inflammatory (CCL2/ERK1/2 Downregulation) Effects on Human Bronchial Epithelial Cells

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Cryptococcosis (caused, for example, by Cryptococcus neoformans) and allergic asthma (caused, for example, by Dermatophagoides pteronyssinus) target the respiratory tract (the lung and bronchial epithelium). C. neoformans and D. pteronyssinus can coexist in the same indoor environment, and exposure to both can cause alterations in the local airway inflammatory milieu and exacerbation of airway inflammatory diseases. Here, we evaluated the effects of the association between C. neoformans and D. pteronyssinus in the modulation of airway inflammatory responses in an in vitro experimental model using human bronchial epithelial cells. BEAS-2B cells were cultivated and stimulated with D. pteronyssinus (10 μg/mL) and/or C. neoformans (MOI 100) for 24 h. No cytotoxic effect was observed in cells stimulated by C. neoformans and/or D. pteronyssinus. The production of IL-8, IL-6, and/or CCL2, but not IL-10, as well as the activation of NF-kB, STAT3, STAT6, and/or ERK1/2 were increased in cells stimulated by C. neoformans or D. pteronyssinus compared to controls. C. neoformans in association with D. pteronyssinus inhibited the CCL2‑ERK1/2 signaling pathway in cells treated with both pathogens compared to cells stimulated by D. pteronyssinus alone. In addition, their association induced an additive effect on the IL-6/STAT3 signaling pathway in cells compared to cells stimulated with D. pteronyssinus or C. neoformans only. D. pteronyssinus increased the internalization and growth of C. neoformans in BEAS-2B cells. D. pteronyssinus in association with C. neoformans promoted pro- and anti-inflammatory responses, which can modulate cryptococcal infection and asthmaticus status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Data available on request from the authors.

References

  1. Campuzano, A., and F.L. Wormley. 2018. Innate immunity against Cryptococcus, from recognition to elimination. Journal of Fungi (Basel) 4 (1): 33. https://doi.org/10.3390/jof4010033.

    Article  CAS  Google Scholar 

  2. Cryptococcosis, Negroni R. 2012. Clinics in Dermatology 30 (6): 599–609. https://doi.org/10.1016/j.clindermatol.2012.01.005.

    Article  Google Scholar 

  3. Nelson, B.N., A.N. Hawkins, and K.L. Wozniak. 2020. Pulmonary macrophage and dendritic cell responses to Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology 10: 37. https://doi.org/10.3389/fcimb.2020.00037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Probert, M., X. Zhou, M. Goodall, et al. 2019. A glucuronoxylomannan epitope exhibits serotype-specific accessibility and redistributes towards the capsule surface during titanization of the fungal pathogen Cryptococcus neoformansInfection and Immunity 87(4):e00731–18. Published 2019 Mar 25. https://doi.org/10.1128/IAI.00731-18.

  5. Casadevall, A., C. Coelho, and A. Alanio. 2018. Mechanisms of Cryptococcus neoformans-mediated host damage. Frontiers in Immunology 9:855. Published 2018 Apr 30. https://doi.org/10.3389/fimmu.2018.00855.

  6. Denham, S.T., J.C.S. Brown. 2018. Mechanisms of pulmonary escape and dissemination by Cryptococcus neoformans. Journal of Fungi (Basel) 4(1):25. Published 2018 Feb 17. https://doi.org/10.3390/jof4010025.

  7. Bequignon, E., D. Mangin, J. Bécaud, et al. 2020. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. Journal of Translational Medicine 18(1):136. Published 2020 Mar 24. https://doi.org/10.1186/s12967-020-02309-9.

  8. Miller, J.D. 2019. The role of dust mites in allergy. Clinical Reviews in Allergy and Immunology 57 (3): 312–329. https://doi.org/10.1007/s12016-018-8693-0.

    Article  CAS  PubMed  Google Scholar 

  9. Wolf, J.M., J. Rivera, and A. Casadevall. 2012. Serum albumin disrupts Cryptococcus neoformans and Bacillus anthracis extracellular vesicles. Cellular Microbiology 14 (5): 762–773. https://doi.org/10.1111/j.1462-5822.2012.01757.x.

    Article  CAS  PubMed  Google Scholar 

  10. Grahnert, A., U. Müller, H. von Buttlar, et al. 2015. Analysis of asthma patients for cryptococcal seroreactivity in an urban German area. Medical Mycology 53 (6): 576–586. https://doi.org/10.1093/mmy/myv024.

    Article  CAS  PubMed  Google Scholar 

  11. Machado, C.C., A.A. Amaral, and L.C. Severo. 1993. Cryptococcus neoformans var. neoformans isolado do solo. Revista do Instituto de Medicina Tropical de São Paulo 35(1): 77–79. https://doi.org/10.1590/S0036-46651993000100011.

  12. Brito-Santos, F., G.G. Barbosa, L. Trilles L, et al. 2015. Environmental isolation of Cryptococcus gattii VGII from indoor dust from typical wooden houses in the deep Amazonas of the Rio Negro basin. PLoS One 10(2):e0115866. Published 2015 Feb 17. https://doi.org/10.1371/journal.pone.0115866.

  13. Liew, K.L., J.M. Jee, I. Yap, et al. In vitro analysis of metabolites secreted during infection of lung epithelial cells by Cryptococcus neoformans. PLoS One 11(4):e0153356. Published 2016 Apr 7. https://doi.org/10.1371/journal.pone.0153356.

  14. de Oliveira, J.R., P.R. da Silva, and A.P. Rogério. 2017. AT-RvD1 modulates the activation of bronchial epithelial cells induced by lipopolysaccharide and Dermatophagoides pteronyssinus. European Journal of Pharmacology 805: 46–50. https://doi.org/10.1016/j.ejphar.2017.03.029.

    Article  CAS  PubMed  Google Scholar 

  15. Zambalde, É.P., M.M. Teixeira, D.C. Favarin, et al. 2016. The anti-inflammatory and pro-resolution effects of aspirin-triggered RvD1 (AT-RvD1) on peripheral blood mononuclear cells from patients with severe asthma. International Immunology 35:142–148. https://doi.org/10.1016/j.intimp.2016.03.014 . Epub 2016 Apr 16. PMID: 27044027.

  16. Jang, J.H., S. Bruse, Y. Liu, et al. 2014. Aldehyde dehydrogenase 3A1 protects airway epithelial cells from cigarette smoke-induced DNA damage and cytotoxicity. Free Radical Biology & Medicine 68: 80–86. https://doi.org/10.1016/j.freeradbiomed.2013.11.028.

    Article  CAS  Google Scholar 

  17. Wang, P., S.M. Henning, D. Heber. 2010. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One 5(4):e10202. Published 2010 Apr 16. https://doi.org/10.1371/journal.pone.0010202.

  18. McMullan, B.J., D. Desmarini, J.T. Djordjevic, et al. 2015. Rapid microscopy and use of vital dyes: potential to determine viability of Cryptococcus neoformans in the clinical laboratory. PLoS One 10(1):e0117186. Published 2015 Jan 27. https://doi.org/10.1371/journal.pone.0117186.

  19. de Oliveira, J.R., D.C. Favarin, S.C. Tanaka, et al. 2015. AT-RvD1 modulates CCL-2 and CXCL-8 production and NF-κB, STAT-6, SOCS1, and SOCS3 expression on bronchial epithelial cells stimulated with IL-4. BioMed Research International 2015: 178369. https://doi.org/10.1155/2015/178369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaka, W., J. Scharringa, A.F. Verheul, et al. 1995. Quantitative analysis of phagocytosis and killing of Cryptococcus neoformans by human peripheral blood mononuclear cells by flow cytometry. Clinical and Diagnostic Laboratory Immunology 2 (6): 753–759.

    Article  CAS  Google Scholar 

  21. Kamonkhantikul, K., M. Arksornnukit, and H. Takahashi. 2017. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. International Journal of Nanomedicine 12:2353–2360. Published 2017 Mar 27. https://doi.org/10.2147/IJN.S132116.

  22. Invernizzi, R., C.M. Lloyd, and P.L. Molyneaux. 2020. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology 160 (2): 171–182. https://doi.org/10.1111/imm.13195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blanco, J.L., and M.E. Garcia. 2008. Immune response to fungal infections. Veterinary Immunology and Immunopathology 125 (1–2): 47–70. https://doi.org/10.1016/j.vetimm.2008.04.020.

    Article  CAS  PubMed  Google Scholar 

  24. Bollam, R., M. Yassin, and T. Phan. 2020. Disseminated cryptococcosis in an immunocompetent patient. Respiratory Medicine Case Reports 30:101034. Published 2020 Mar 3. https://doi.org/10.1016/j.rmcr.2020.101034.

  25. Colby, J.K., K.M. Gott, J.A. Wilder, and B.D. Levy. 2016. Lipoxin signaling in murine lung host responses to Cryptococcus neoformans infection. American Journal of Respiratory Cell and Molecular Biology 54 (1): 25–33. https://doi.org/10.1165/rcmb.2014-0102OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hester, M.M., C.K. Lee, A. Abraham, et al. 2020. Protection of mice against experimental cryptococcosis using glucan particle-based vaccines containing novel recombinant antigens. Vaccine. 38 (3): 620–626. https://doi.org/10.1016/j.vaccine.2019.10.051.

    Article  CAS  PubMed  Google Scholar 

  27. May, R.C., and A. Casadevall. 2018. In Fungal intracellular pathogenesis, form determines fate. MBio 9(5):e02092–18. Published 2018 Oct 23. https://doi.org/10.1128/mBio.02092-18.

  28. Xu, Z., J. Jing, H. Wang, et al. 2009. Pulmonary alveolar proteinosis in China: A systematic review of 241 cases. Respirology 14 (5): 761–766. https://doi.org/10.1111/j.1440-1843.2009.01539.x.

    Article  PubMed  Google Scholar 

  29. Morel, L., O. Domingues, J. Zimmer, et al. 2020. Revisiting the role of neurotrophic factors in inflammation. Cells 9(4):865. Published 2020 Apr 2. https://doi.org/10.3390/cells9040865.

  30. Gregory, L.G., and C.M. Lloyd. 2011. Orchestrating house dust mite-associated allergy in the lung. Trends in Immunology 32 (9): 402–411. https://doi.org/10.1016/j.it.2011.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pereira, A.B.M., J.R. Oliveira, A.L.J. Souza, et al. 2021. Effects of cigarette smoke extract on bronchial epithelial cells stimulated with Cryptococcus neoformans. Medical Microbiology and Immunology 210 (4): 221–233. https://doi.org/10.1007/s00430-021-00715-4 (Epub 2021 Jul 6 PMID: 34228244).

    Article  CAS  PubMed  Google Scholar 

  32. He, X., X. Shi, S. Puthiyakunnon, et al. 2016. CD44-mediated monocyte transmigration across Cryptococcus neoformans-infected brain microvascular endothelial cells is enhanced by HIV-1 gp41-I90 ectodomain. Journal of Biomedical Science 20 (23): 28. https://doi.org/10.1186/s12929-016-0247-2.PMID:26897523;PMCID:PMC4761181.

    Article  Google Scholar 

  33. Shenmar, K., K.K. Sharma, N. Wangoo, et al. 2017. Synthesis, stability and mechanistic studies of potent anticryptococcal hexapeptides. European Journal of Medicinal Chemistry 132: 192–203. https://doi.org/10.1016/j.ejmech.2017.03.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Subramani, A., P. Griggs, N. Frantzen, et al. 2020. Intracellular Cryptococcus neoformans disrupts the transcriptome profile of M1- and M2-polarized host macrophages. PLoS One 15(8):e0233818. Published 2020 Aug 28. https://doi.org/10.1371/journal.pone.0233818

  35. Wang, Z.A., C.L. Griffith, M.L. Skowyra, et al. 2014. Cryptococcus neoformans dual GDP-mannose transporters and their role in biology and virulence. Eukaryotic Cell 13 (6): 832–842. https://doi.org/10.1128/EC.00054-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor-Smith, L.M., and R.C. May. 2016. New weapons in the Cryptococcus infection toolkit. Current Opinion in Microbiology 34: 67–74. https://doi.org/10.1016/j.mib.2016.07.018.

    Article  CAS  PubMed  Google Scholar 

  37. Herbert, C.A., C.M. King, P.C. Ring, et al. 1995. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. American Journal of Respiratory Cell and Molecular Biology 12 (4): 369–378. https://doi.org/10.1165/ajrcmb.12.4.7695916.

    Article  CAS  PubMed  Google Scholar 

  38. Jevnikar, Z., J. Östling, E. Ax, et al. 2019. Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. The Journal of Allergy and Clinical Immunology 143 (2): 577–590. https://doi.org/10.1016/j.jaci.2018.05.026.

    Article  CAS  PubMed  Google Scholar 

  39. Choy, D.F., and J.R. Arron. 2020. Beyond type 2 cytokines in asthma—new insights from old clinical trials. Expert Opinion on Therapeutic Targets 24 (5): 463–475. https://doi.org/10.1080/14728222.2020.1744567.

    Article  PubMed  Google Scholar 

  40. Lin, Y.L., S.H. Chen, and J.Y. Wang. 2016. Critical role of IL-6 in dendritic cell-induced allergic inflammation of asthma. Journal of Molecular Medicine (Berlin, Germany) 94 (1): 51–59. https://doi.org/10.1007/s00109-015-1325-8.

    Article  CAS  Google Scholar 

  41. Delfino, D., L. Cianci, E. Lupis, et al. 1997. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components. Infection and Immunity 65 (6): 2454–2456. https://doi.org/10.1128/iai.65.6.2454-2456.1997.

  42. Midiri, A., G. Mancuso, G. Lentini, et al. 2020. Characterization of an immunogenic cellulase secreted by Cryptococcus pathogens [published online ahead of print, 2020 Apr 4]. Medical Mycology myaa012. https://doi.org/10.1093/mmy/myaa012.

  43. Li, X., G. Liu, J. Ma, et al. 2015. Lack of IL-6 increases blood-brain barrier permeability in fungal meningitis. Journal of Biosciences 40 (1): 7–12. https://doi.org/10.1007/s12038-014-9496-y.

    Article  CAS  PubMed  Google Scholar 

  44. Scheller, J., A. Chalaris, D. Schmidt-Arras, et al. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta 1813 (5): 878–888. https://doi.org/10.1016/j.bbamcr.2011.01.034 (Epub 2011 Feb 4 PMID: 21296109).

    Article  CAS  PubMed  Google Scholar 

  45. Morieri, M.L., A. Passaro, and G. Zuliani. 2017. Interleukin-6 “trans-signaling” and ischemic vascular disease: the important role of soluble gp130. Mediators of Inflammation 1396398. https://doi.org/10.1155/2017/1396398. Epub 2017 Jan 31. PMID: 28250574; PMCID: PMC5307001.

  46. Rose-John S. 2020. Interleukin-6 signalling in health and disease. F1000Res 9:F1000 Faculty Rev-1013. https://doi.org/10.12688/f1000research.26058.1. PMID: 32864098; PMCID: PMC7443778.

  47. Myszor, I.T., Z. Parveen, H. Ottosson, et al. 2019. Novel aroylated phenylenediamine compounds enhance antimicrobial defense and maintain airway epithelial barrier integrity. Scientific Reports 9 (1): 7114. https://doi.org/10.1038/s41598-019-43350-z.

  48. Júlio de Souza, A.L., A. Beatriz Mahler Pereira, J. Robison de Oliveira, et al. 2020. Dermatophagoides pteronyssinus-induced pro-inflammatory responses mediated via STAT3 and NF-kappaB signaling pathways in human bronchial epithelial cells—inhibitory effects of Lafoensia pacari and ellagic acid. Journal of Pharmacological Sciences 142(4):157–164. https://doi.org/10.1016/j.jphs.2020.01.004.

  49. Maruvada, R., L. Zhu, D. Pearce, et al. 2012. Cryptococcus neoformans phospholipase B1 activates host cell Rac1 for traversal across the blood-brain barrier. Cellular Microbiology 14 (10): 1544–1553. https://doi.org/10.1111/j.1462-5822.2012.01819.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rincon, M., and C.G. Irvin. 2012. Role of IL-6 in asthma and other inflammatory pulmonary diseases. International Journal of Biological Sciences 8 (9): 1281–1290. https://doi.org/10.7150/ijbs.4874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gschwandtner, M., R. Derler, K.S. Midwood. 2019. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Frontiers in Immunology 10:2759. Published 2019 Dec 13. https://doi.org/10.3389/fimmu.2019.02759.

  52. Setianingrum, F., R. Rautemaa-Richardson, and D.W. Denning. 2019. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Medical Mycology 57 (2): 133–150. https://doi.org/10.1093/mmy/myy086.

    Article  PubMed  Google Scholar 

  53. Lopes, J.P., M. Stylianou, E. Backman, et al. 2019. Cryptococcus neoformans induces MCP-1 release and delays the death of human mast cells. Frontiers in Cellular and Infection Microbiology 9:289. Published 2019 Aug 13. https://doi.org/10.3389/fcimb.2019.00289.

  54. Levitz, S.M., A. Tabuni, T.R. Kozel, R.S. MacGill, R.R. Ingalls, and D.T. Golenbock. 1997. Binding of cryptococcus neoformans to heterologously expressed human complement receptors. Infection and Immunity 65 (3): 931–935. https://doi.org/10.1128/IAI.65.3.931-935.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huffnagle, G.B., R.M. Strieter, T.J. Standiford, R.A. McDonald, M.D. Burdick, S.L. Kunkel, and G.B. Toews. 1995. The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection. The Journal of Immunology 155 (10): 4790–4797.

  56. Panganiban, R.P., B.M. Vonakis, F.T. Ishmael, et al. 2014. Coordinated post-transcriptional regulation of the chemokine system: Messages from CCL2. Journal of Interferon and Cytokine Research 34 (4): 255–266. https://doi.org/10.1089/jir.2013.0149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin, S.K., S.H. Kok, F.T. Yeh, et al. 2004. MEK/ERK and signal transducer and activator of transcription signaling pathways modulate oncostatin M-stimulated CCL2 expression in human osteoblasts through a common transcription factor. Arthritis and Rheumatism 50 (3): 785–793. https://doi.org/10.1002/art.20058.

    Article  CAS  PubMed  Google Scholar 

  58. Tang, X., Y. Yang, and S. Amar. 2011. Novel regulation of CCL2 gene expression by murine LITAF and STAT6B. PLoS ONE 6 (9): e25083. https://doi.org/10.1371/journal.pone.0025083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heung, L.J., and T.M. Hohl. 2019. Inflammatory monocytes are detrimental to the host immune response during acute infection with Cryptococcus neoformans. PLoS Pathogens 15(3):e1007627. Published 2019 Mar 21. https://doi.org/10.1371/journal.ppat.1007627.

  60. Carmo, A.A., B.R. Costa, J.P. Vago, et al. 2014. Plasmin induces in vivo monocyte recruitment through protease-activated receptor-1-, MEK/ERK-, and CCR2-mediated signaling. The Journal of Immunology 193 (7): 3654–3663. https://doi.org/10.4049/jimmunol.1400334.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, W., Q. Liang, S. Balzar, et al. 2008. Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways. The Journal of Allergy and Clinical Immunology 121 (4): 893-902.e2. https://doi.org/10.1016/j.jaci.2008.02.004.

    Article  CAS  PubMed  Google Scholar 

  62. Goplen, N., Z. Karim, L. Guo, et al. 2012. ERK1 is important for Th2 differentiation and development of experimental asthma. The FASEB Journal 26 (5): 1934–1945. https://doi.org/10.1096/fj.11-196477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J.S., I.S. Kim, J.S. Ryu, et al. 2008. House dust mite, Dermatophagoides pteronissinus increases expression of MCP-1, IL-6, and IL-8 in human monocytic THP-1 cells. Cytokine 42 (3): 365–371. https://doi.org/10.1016/j.cyto.2008.03.010.

    Article  CAS  PubMed  Google Scholar 

  64. Gibson, J.F., S.A. Johnston. 2015. Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis. Fungal Genetics and Biology 78:76–86. https://doi.org/10.1016/j.fgb.2014.11.006.

  65. Pericolini, E., E. Gabrielli, G. Bistoni, et al. 2010. Role of CD45 signaling pathway in galactoxylomannan-induced T cell damage. PLoS One 5(9):e12720. Published 2010 Sep 14. https://doi.org/10.1371/journal.pone.0012720.

  66. Chen, S., H. Yan, L. Zhang, et al. 2015. Cryptococcus neoformans infection and immune cell regulation in human monocytes. Cellular Physiology and Biochemistry 37 (2): 537–547. https://doi.org/10.1159/000430375.

    Article  CAS  PubMed  Google Scholar 

  67. Monari, C., T.R. Kozel, F. Paganelli, et al. 2006. Microbial immune suppression mediated by direct engagement of inhibitory Fc receptor. The Journal of Immunology 177 (10): 6842–6851. https://doi.org/10.4049/jimmunol.177.10.6842.

    Article  CAS  PubMed  Google Scholar 

  68. Haynes, J.B., L.M. Sircy, L.E. Heusinkveld, et al. 2016. Modulation of macrophage inflammatory nuclear factor κB (NF-κB) signaling by intracellular Cryptococcus neoformans. Journal of Biological Chemistry 291 (30): 15614–15627. https://doi.org/10.1074/jbc.M116.738187.

    Article  CAS  Google Scholar 

  69. Schuliga, M. 2015. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5(3):1266–1283. Published 2015 Jun 26. https://doi.org/10.3390/biom5031266.

  70. Svenningsen, S., P. Nair. 2017. Asthma endotypes and an overview of targeted therapy for asthma. Frontiers in Medicine (Lausanne) 4:158. Published 2017 Sep 26.https://doi.org/10.3389/fmed.2017.00158.

  71. Guillot, L., S.F. Carroll, M. Badawy, et al. 2008. Cryptococcus neoformans induces IL-8 secretion and CXCL1 expression by human bronchial epithelial cells. Respiratory Research 2008;9(1):9. Published 2008 Jan 22. https://doi.org/10.1186/1465-9921-9-9.

  72. Lee, N.R., S.Y. Baek, A. Gu, et al. 2016. House dust mite allergen suppresses neutrophil apoptosis by cytokine release via PAR2 in normal and allergic lymphocytes. Immunologic Research 64 (1): 123–132. https://doi.org/10.1007/s12026-015-8730-5.

    Article  CAS  PubMed  Google Scholar 

  73. Jafari-Nedooshan, J., M. Moghimi, M. Zare, et al. 2019. Association of promoter region polymorphisms of IL-10 gene with susceptibility to lung cancer: systematic review and meta-analysis. Asian Pacific Journal of Cancer Prevention 20(7):1951–1957. Published 2019 Jul 1. https://doi.org/10.31557/APJCP.2019.20.7.1951.

  74. Zhang, S. 2018. The role of transforming growth factor β in T helper 17 differentiation. Immunology 155 (1): 24–35. https://doi.org/10.1111/imm.12938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (no. 475349/2010–5), Fundação de Apoio a Pesquisa do Estado de Minas Gerais (FAPEMIG; APQ 01631/11 e APQ-01873–14), and Rede de Pesquisa em Doenças Infecciosas Humanas e Animais do Estado de Minas Gerais and Universidade Federal do Triângulo Mineiro (UFTM), Brazil. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Henrique Ismarsi de Souza: data curation, formal analysis, investigation, methodology, project administration, validation, visualization, and writing—original draft preparation. Aline Beatriz Mahler Pereira: investigation, methodology, project administration, validation, visualization, and writing—original draft preparation. Jhony Robison de Oliveira: investigation and methodology. David Nascimento Silva Teixeira: funding acquisition, investigation, resources, and writing—original draft preparation. Mario Leon Silva-Vergara: funding acquisition and resources. Paulo Roberto da Silva: funding acquisition, investigation, and resources. Alexandre de Paula Rogerio: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, visualization, and writing—original draft preparation.

Corresponding author

Correspondence to Alexandre Paula Rogério.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, H.I., Pereira, A.B.M., Oliveira, J.R. et al. Cryptococcus neoformans in Association with Dermatophagoides pteronyssinus has Pro- (IL-6/STAT3 Overproduction) and Anti-inflammatory (CCL2/ERK1/2 Downregulation) Effects on Human Bronchial Epithelial Cells. Inflammation 45, 1269–1280 (2022). https://doi.org/10.1007/s10753-021-01619-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01619-4

KEY WORDS

Navigation