Skip to main content
Log in

Phosphorylated Heat Shock Protein 27 Inhibits Lipopolysaccharide-Induced Inflammation in Thp1 Cells by Promoting TLR4 Endocytosis, Ubiquitination, and Degradation

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aims of this study were to investigate the effect of Hsp27 on LPS-induced inflammation and identify the precise mechanisms about how Hsp27 regulates LPS-induced TLR4 signaling in Thp1 cells. Thp1 cells were transfected with Flag-Hsp27 or pcDNA3.1, and then treated with LPS for indicated time. TNF-α, IL-1β, and IL-6 were determined by ELISA. The protein levels of Hsp27, p-Hsp27 (Ser15, Ser78, and Ser82), and TLR4 were measured by Western blotting. In vitro study showed that over-expression of Hsp27 downregulated the release of TNF-α, IL-1β, and IL-6 and suppressed the activation of TLR4 signals after stimulated by LPS. The location of TLR4 and RAB5 was detected by confocal microscopy. Immunoprecipitation was used to determine the ubiquitination and degradation of TLR4 and interaction between Hsp27 and TLR4. Results showed that Hsp27 could promote TLR4 endocytosis and ubiquitination and degradation. Further research revealed that Hsp27 was phosphorylated after LPS, only phosphorylated Hsp27 can interact with TLR4 and inhibit the activation of TLR4 signaling, which was demonstrated by inhibition of Hsp27 phosphorylation with inhibitors or transfection of Hsp27 mutants into Thp1 cells. Phosphorylated Hsp27 reduced the release of TNF-α, IL-1β, and IL-6, and suppressed the activation of TLR4 signaling by promoting TLR4 endocytosis, ubiquitination, and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vatanen, T., A.D. Kostic, E. d'Hennezel, H. Siljander, E.A. Franzosa, M. Yassour, R. Kolde, H. Vlamakis, T.D. Arthur, A.M. Hämäläinen, A. Peet, V. Tillmann, R. Uibo, S. Mokurov, N. Dorshakova, J. Ilonen, S.M. Virtanen, S.J. Szabo, J.A. Porter, H. Lähdesmäki, C. Huttenhower, D. Gevers, T.W. Cullen, M. Knip, DIABIMMUNE Study Group, and R.J. Xavier. 2016. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165 (6): 1551. https://doi.org/10.1016/j.cell.2016.05.056.

    Article  CAS  PubMed  Google Scholar 

  2. van der Mark, V.A., M. Ghiboub, C. Marsman, J. Zhao, R. van Dijk, J.K. Hiralall, K.S. Ho-Mok, Z. Castricum, W.J. de Jonge, R.P.J.O. Elferink, and C.C. Paulusma. 2017. Erratum to: Phospholipid flippases attenuate LPS-induced TLR4 signaling by mediating endocytic retrieval of Toll-like receptor 4. Cellular and Molecular Life Sciences 74 (7): 1365. https://doi.org/10.1007/s00018-017-2475-3.

    Article  CAS  PubMed  Google Scholar 

  3. Xie, S., B. Liu, S. Fu, W. Wang, Y. Yin, N. Li, W. Chen, J. Liu, and D. Liu. 2014. GLP-2 suppresses LPS-induced inflammation in macrophages by inhibiting ERK phosphorylation and NF-kappaB activation. Cellular Physiology and Biochemistry 34 (2): 590–602. https://doi.org/10.1159/000363025.

    Article  CAS  PubMed  Google Scholar 

  4. Savant, S.S., S. Sriramkumar, and H.M. O'Hagan. 2018. The role of inflammation and inflammatory mediators in the development, progression, metastasis, and chemoresistance of epithelial ovarian cancer. Cancers (Basel) 10 (8). https://doi.org/10.3390/cancers10080251.

  5. Dandekar, A., Y. Qiu, H. Kim, J. Wang, X. Hou, X. Zhang, Z. Zheng, R. Mendez, F.S. Yu, A. Kumar, D. Fang, F. Sun, and K. Zhang. 2016. Toll-like receptor (TLR) signaling interacts with CREBH to modulate high-density lipoprotein (HDL) in response to bacterial endotoxin. The Journal of Biological Chemistry 291 (44): 23149–23158. https://doi.org/10.1074/jbc.M116.755728.

  6. Garcia-Rodriguez, C., I. Parra-Izquierdo, I. Castanos-Mollor, J. Lopez, J.A. San Roman, and M. Sanchez Crespo. 2018. Toll-like receptors, inflammation, and calcific aortic valve disease. Frontiers in Physiology 9: 201. https://doi.org/10.3389/fphys.2018.00201.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xie, Z., G. Huang, Z. Wang, S. Luo, P. Zheng, and Z. Zhou. 2018. Epigenetic regulation of Toll-like receptors and its roles in type 1 diabetes. Journal of Molecular Medicine (Berlin, Germany) 96: 741–751. https://doi.org/10.1007/s00109-018-1660-7.

    Article  CAS  Google Scholar 

  8. Ding, Y., Y. Qiu, L. Zou, Z. Tan, J. Dai, and W. Xu. 2015. Three conserved MyD88-recruiting TLR residues exert different effects on the human TLR4 signaling pathway. Immunologic Research 62 (2): 213–221. https://doi.org/10.1007/s12026-015-8652-2.

    Article  CAS  PubMed  Google Scholar 

  9. Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nature Reviews. Immunology 4 (7): 499–511. https://doi.org/10.1038/nri1391.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, S., G. Wang, and W. Zhang. 2018. Effect of TLR4/MyD88 signaling pathway on sepsis-associated acute respiratory distress syndrome in rats, via regulation of macrophage activation and inflammatory response. Experimental and Therapeutic Medicine 15 (4): 3376–3384. https://doi.org/10.3892/etm.2018.5815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suh, H.S., M.L. Zhao, N. Choi, T.J. Belbin, C.F. Brosnan, and S.C. Lee. 2009. TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virology 392 (2): 246–259. https://doi.org/10.1016/j.virol.2009.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, Y., H. Zhou, Y. Yang, W. Li, M. Zhou, Z. Zeng, W. Xiong, M. Wu, H. Huang, Y. Zhou, C. Peng, C. Huang, X. Li, and G. Li. 2007. Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFkappaB and MAPKs signaling pathways. Molecular Immunology 44 (5): 984–992. https://doi.org/10.1016/j.molimm.2006.03.013.

    Article  CAS  PubMed  Google Scholar 

  13. Lu, Y.C., W.C. Yeh, and P.S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42 (2): 145–151. https://doi.org/10.1016/j.cyto.2008.01.006.

    Article  CAS  PubMed  Google Scholar 

  14. Beutler, B., X. Du, and A. Poltorak. 2001. Identification of toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. Journal of Endotoxin Research 7 (4): 277–280.

    Article  CAS  PubMed  Google Scholar 

  15. Wen, L., R.E. Ley, P.Y. Volchkov, P.B. Stranges, L. Avanesyan, A.C. Stonebraker, C. Hu, F.S. Wong, G.L. Szot, J.A. Bluestone, J.I. Gordon, and A.V. Chervonsky. 2008. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455 (7216): 1109–1113. https://doi.org/10.1038/nature07336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cox, D., and H. Ecroyd. 2017. The small heat shock proteins alphaB-crystallin (HSPB5) and Hsp27 (HSPB1) inhibit the intracellular aggregation of alpha-synuclein. Cell Stress & Chaperones 22 (4): 589–600. https://doi.org/10.1007/s12192-017-0785-x.

    Article  CAS  Google Scholar 

  17. Li, C., J. Wu, Y. Li, and G. Xing. 2017. Cytoprotective effect of heat shock protein 27 against lipopolysaccharide-induced apoptosis of renal epithelial HK-2 cells. Cellular Physiology and Biochemistry 41 (6): 2211–2220. https://doi.org/10.1159/000475636.

    Article  CAS  PubMed  Google Scholar 

  18. He, K., L. Xia, and J. Zhang. 2018. LPS ameliorates renal ischemia/reperfusion injury via Hsp27 up-regulation. International Urology and Nephrology 50 (3): 571–580. https://doi.org/10.1007/s11255-017-1735-3.

    Article  CAS  PubMed  Google Scholar 

  19. Qi, S., Y. Xin, Z. Qi, Y. Xu, Y. Diao, L. Lan, L. Luo, and Z. Yin. 2014. HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with beta-arrestin2. Cellular Signalling 26 (3): 594–602. https://doi.org/10.1016/j.cellsig.2013.11.033.

    Article  CAS  PubMed  Google Scholar 

  20. Wu, Y., J. Liu, Z. Zhang, H. Huang, J. Shen, S. Zhang, Y. Jiang, L. Luo, and Z. Yin. 2009. HSP27 regulates IL-1 stimulated IKK activation through interacting with TRAF6 and affecting its ubiquitination. Cellular Signalling 21 (1): 143–150. https://doi.org/10.1016/j.cellsig.2008.10.001.

    Article  CAS  PubMed  Google Scholar 

  21. Oeckinghaus, A., and S. Ghosh. 2009. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology 1 (4): a000034. https://doi.org/10.1101/cshperspect.a000034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, C., J.T. Jones, H.S. Chand, M.G. Wathelet, C.M. Evans, B. Dickey, J. Xiang, Y.A. Mebratu, and Y. Tesfaigzi. 2018. Noxa/HSP27 complex delays degradation of ubiquitylated IkBalpha in airway epithelial cells to reduce pulmonary inflammation. Mucosal Immunology 11 (3): 741–751. https://doi.org/10.1038/mi.2017.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, H.Y., S.Y. Park, and S.Y. Choung. 2018. Enhancing effects of myricetin on the osteogenic differentiation of human periodontal ligament stem cells via BMP-2/Smad and ERK/JNK/p38 mitogen-activated protein kinase signaling pathway. European Journal of Pharmacology 834: 84–91. https://doi.org/10.1016/j.ejphar.2018.07.012.

    Article  CAS  PubMed  Google Scholar 

  24. Chung, S.S., Y. Wu, Q. Okobi, D. Adekoya, M. Atefi, O. Clarke, P. Dutta, and J.V. Vadgama. 2017. Proinflammatory cytokines IL-6 and TNF-alpha increased telomerase activity through NF-kappaB/STAT1/STAT3 activation, and withaferin A inhibited the signaling in colorectal cancer cells. Mediators of Inflammation 2017: 5958429. https://doi.org/10.1155/2017/5958429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamyshova, E.S., M.Y. Shvetsov, I.M. Kutyrina, A.M. Burdennyi, A. Zheng, V.V. Nosikov, and I.N. Bobkova. 2016. Clinical value of TNF, IL-6, and IL-10 gene polymorphic markers in chronic glomerulonephritis. Terapevticheskiĭ Arkhiv 88 (6): 45–50. https://doi.org/10.17116/terarkh201688645-50.

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh, M., J. Subramani, M.M. Rahman, and L.H. Shapiro. 2015. CD13 restricts TLR4 endocytic signal transduction in inflammation. Journal of Immunology 194 (9): 4466–4476. https://doi.org/10.4049/jimmunol.1403133.

    Article  CAS  Google Scholar 

  27. Min, Y., S. Lee, M.J. Kim, E. Chun, and K.Y. Lee. 2017. Ubiquitin-specific protease 14 negatively regulates toll-like receptor 4-mediated signaling and autophagy induction by inhibiting ubiquitination of TAK1-binding protein 2 and Beclin 1. Frontiers in Immunology 8: 1827. https://doi.org/10.3389/fimmu.2017.01827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gui, J., Y. Huang, and O. Shimmi. 2016. Scribbled optimizes BMP signaling through its receptor internalization to the Rab5 endosome and promote robust epithelial morphogenesis. PLoS Genetics 12 (11): e1006424. https://doi.org/10.1371/journal.pgen.1006424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalin, S., D.P. Buser, and M. Spiess. 2016. A fresh look at the function of Rabaptin5 on endosomes. Small GTPases 7 (1): 34–37. https://doi.org/10.1080/21541248.2016.1140616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamamoto, Y., K. Hosoda, T. Imahori, J. Tanaka, K. Matsuo, T. Nakai, Y. Irino, M. Shinohara, N. Sato, T. Sasayama, K. Tanaka, H. Nagashima, M. Kohta, and E. Kohmura. 2018. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: a putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion. Brain Research 1687: 82–94. https://doi.org/10.1016/j.brainres.2018.03.001.

    Article  CAS  PubMed  Google Scholar 

  31. Vanderwaal, R.P., B. Cha, E.G. Moros, and J.L. Roti Roti. 2006. HSP27 phosphorylation increases after 45 degrees C or 41 degrees C heat shocks but not after non-thermal TDMA or GSM exposures. International Journal of Hyperthermia 22 (6): 507–519. https://doi.org/10.1080/02656730600924406.

    Article  CAS  PubMed  Google Scholar 

  32. Duran, M.C., E. Boeri-Erba, S. Mohammed, J.L. Martin-Ventura, J. Egido, F. Vivanco, and O.N. Jensen. 2007. Characterization of HSP27 phosphorylation sites in human atherosclerotic plaque secretome. Methods in Molecular Biology 357: 151–163. https://doi.org/10.1385/1-59745-214-9:151.

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka, T., M. Iino, and K. Goto. 2018. Sec6 enhances cell migration and suppresses apoptosis by elevating the phosphorylation of p38 MAPK, MK2, and HSP27. Cellular Signalling 49: 1–16. https://doi.org/10.1016/j.cellsig.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, W., J. Weng, L. Yu, Q. Huang, Y. Jiang, and X. Guo. 2018. Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. BMC Pulmonary Medicine 18 (1): 178. https://doi.org/10.1186/s12890-018-0735-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park, S., H.J. Shin, M. Shah, H.Y. Cho, M.A. Anwar, A. Achek, H.K. Kwon, B. Lee, T.H. Yoo, and S. Choi. 2017. TLR4/MD2 specific peptides stalled in vivo LPS-induced immune exacerbation. Biomaterials 126: 49–60. https://doi.org/10.1016/j.biomaterials.2017.02.023.

    Article  CAS  PubMed  Google Scholar 

  36. Nagai, Y., S. Akashi, M. Nagafuku, M. Ogata, Y. Iwakura, S. Akira, T. Kitamura, A. Kosugi, M. Kimoto, and K. Miyake. 2002. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nature Immunology 3 (7): 667–672. https://doi.org/10.1038/ni809.

    Article  CAS  PubMed  Google Scholar 

  37. Kaiser, F., N. Donos, B. Henderson, R. Alagarswamy, G. Pelekos, D. Boniface, and L. Nibali. 2018. Association between circulating levels of heat-shock protein 27 and aggressive periodontitis. Cell Stress & Chaperones 23: 847–856. https://doi.org/10.1007/s12192-018-0891-4.

    Article  CAS  Google Scholar 

  38. Park, S.W., S.W. Chen, M. Kim, V.D. D'Agati, and H.T. Lee. 2009. Human heat shock protein 27-overexpressing mice are protected against acute kidney injury after hepatic ischemia and reperfusion. American Journal of Physiology. Renal Physiology 297 (4): F885–F894. https://doi.org/10.1152/ajprenal.00317.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kammanadiminti, S.J., and K. Chadee. 2006. Suppression of NF-kappaB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. The Journal of Biological Chemistry 281 (36): 26112–26120. https://doi.org/10.1074/jbc.M601988200.

  40. Medvedev, A.E., W. Piao, J. Shoenfelt, S.H. Rhee, H. Chen, S. Basu, L.M. Wahl, M.J. Fenton, and S.N. Vogel. 2007. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. The Journal of Biological Chemistry 282 (22): 16042–16053. https://doi.org/10.1074/jbc.M606781200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, C., Y. Chai, S. Shou, J. Wang, Y. Huang, and T. Ma. 2018. Toll-like receptor 4 deficiency increases resistance in sepsis-induced immune dysfunction. International Immunopharmacology 54: 169–176. https://doi.org/10.1016/j.intimp.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  42. Schappe, M.S., and B.N. Desai. 2018. Measurement of TLR4 and CD14 receptor endocytosis using flow cytometry. Bio Protocol 8 (14). https://doi.org/10.21769/BioProtoc.2926.

  43. Ruan, J., Z. Qi, L. Shen, Y. Jiang, Y. Xu, L. Lan, L. Luo, and Z. Yin. 2015. Crosstalk between JNK and NF-kappaB signaling pathways via HSP27 phosphorylation in HepG2 cells. Biochemical and Biophysical Research Communications 456 (1): 122–128. https://doi.org/10.1016/j.bbrc.2014.11.045.

    Article  CAS  PubMed  Google Scholar 

  44. Shen, L., Z. Qi, Y. Zhu, X. Song, C. Xuan, P. Ben, L. Lan, L. Luo, and Z. Yin. 2016. Phosphorylated heat shock protein 27 promotes lipid clearance in hepatic cells through interacting with STAT3 and activating autophagy. Cellular Signalling 28 (8): 1086–1098. https://doi.org/10.1016/j.cellsig.2016.05.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Natural Science Foundation of China (Nos. 81671565, 81771703, and 81471557) and the Priority Academic Program Development of Jiangsu Higher Education Institution (PADD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Luo, Shixiang Liu or Zhimin Yin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qi, X., Jiang, B. et al. Phosphorylated Heat Shock Protein 27 Inhibits Lipopolysaccharide-Induced Inflammation in Thp1 Cells by Promoting TLR4 Endocytosis, Ubiquitination, and Degradation. Inflammation 42, 1788–1799 (2019). https://doi.org/10.1007/s10753-019-01041-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01041-x

KEY WORDS

Navigation