Skip to main content

Advertisement

Log in

Suberoylanilide Hydroxamic Acid, an Inhibitor of Histone Deacetylase, Induces Apoptosis in Rheumatoid Arthritis Fibroblast-Like Synoviocytes

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Here, we explored the effects of suberoylanilide hydroxamic acid (SAHA) on the viability and apoptosis of rheumatoid arthritis of fibroblast-like synoviocytes (rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS)). FLS obtained from RA patients were treated with SAHA. SAHA significantly inhibited the viability of RA FLS in a concentration-dependent manner up to 5 μM. SAHA-treated FLS showed a significant increase in the percentage of apoptosis and the expression and activity of caspase-3 and higher intracellular ROS levels. N-acetyl-l-cysteine (NAC) pretreatment significantly attenuated SAHA-induced apoptosis, decreasing the percentage of apoptosis by about 60 %. A significant decline in phosphorylated IκBα and nuclear factor kappa B (NF-κB) p65 and concomitant increase in total IκBα were shown in SAHA-treated FLS. Additionally, the levels of anti-apoptotic Bcl-2 proteins (Bcl-xL and Mcl-1) were significantly reduced by SAHA. Collectively, SAHA induces apoptosis of RA FLS, at least partially, through generation of ROS and suppression of NF-κB activation and Bcl-xL and Mcl-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Charles, J., H. Britt, and Y. Pan. 2013. Rheumatoid arthritis. Australian Family Physician 42: 765.

    PubMed  Google Scholar 

  2. Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews 233: 233–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Koenders, M.I., and W.B. van den Berg. 2015. Novel therapeutic targets in rheumatoid arthritis. Trends in Pharmacological Sciences 36: 189–195.

    Article  CAS  PubMed  Google Scholar 

  4. Maruyama, N., F. Hirano, N. Yoshikawa, K. Migita, K. Eguchi, and H. Tanaka. 2000. Thrombin stimulates cell proliferation in human fibroblast-like synoviocytes in nuclear factor-kappaB activation and protein kinase C mediated pathway. Journal of Rheumatology 27: 2777–85.

    CAS  PubMed  Google Scholar 

  5. Mei, Y., Y. Zheng, H. Wang, J. Gao, D. Liu, Y. Zhao, and Z. Zhang. 2011. Arsenic trioxide induces apoptosis of fibroblast-like synoviocytes and represents antiarthritis effect in experimental model of rheumatoid arthritis. Journal of Rheumatology 38: 36–43.

    Article  CAS  PubMed  Google Scholar 

  6. Verstrepen, L., and R. Beyaert. 2014. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochemical Pharmacology 92: 519–29.

    Article  CAS  PubMed  Google Scholar 

  7. Piekarz, R.L., R. Frye, M. Turner, J.J. Wright, S.L. Allen, M.H. Kirschbaum, J. Zain, H.M. Prince, J.P. Leonard, L.J. Geskin, C. Reeder, D. Joske, W.D. Figg, E.R. Gardner, S.M. Steinberg, E.S. Jaffe, M. Stetler-Stevenson, S. Lade, A.T. Fojo, and S.E. Bates. 2009. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. Journal of Clinical Oncology 27: 5410–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Garcia-Manero, G., H. Yang, C. Bueso-Ramos, A. Ferrajoli, J. Cortes, W.G. Wierda, S. Faderl, C. Koller, G. Morris, G. Rosner, A. Loboda, V.R. Fantin, S.S. Randolph, J.S. Hardwick, J.F. Reilly, C. Chen, J.L. Ricker, J.P. Secrist, V.M. Richon, S.R. Frankel, and H.M. Kantarjian. 2008. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111: 1060–6.

    Article  CAS  PubMed  Google Scholar 

  9. Lane, A.A., and B.A. Chabner. 2009. Histone deacetylase inhibitors in cancer therapy. Journal of Clinical Oncology 27: 5459–68.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, S., Y. Zhao, W.F. Gou, S. Zhao, Y. Takano, and H.C. Zheng. 2013. The anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) on the aggressive phenotypes of ovarian carcinoma cells. PloS One 8, e79781.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bali, P., M. Pranpat, R. Swaby, W. Fiskus, H. Yamaguchi, M. Balasis, K. Rocha, H.G. Wang, V. Richon, and K. Bhalla. 2005. Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of her-2. Clinical Cancer Research 11: 6382–9.

    Article  CAS  PubMed  Google Scholar 

  12. You, B.R., and W.H. Park. 2014. Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels. International Journal of Oncology 44: 1745–55.

    CAS  PubMed  Google Scholar 

  13. Fu, P.P., Q. Xia, H.M. Hwang, P.C. Ray, and H. Yu. 2014. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis 22: 64–75.

    Article  CAS  PubMed  Google Scholar 

  14. Li, M., X. Liu, X. Sun, Z. Wang, W. Guo, F. Hu, H. Yao, X. Cao, J. Jin, P.G. Wang, J. Shen, and Z. Li. 2013. Therapeutic effects of NK-HDAC-1, a novel histone deacetylase inhibitor, on collagen-induced arthritis through the induction of apoptosis of fibroblast-like synoviocytes. Inflammation 36: 888–96.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, X.D., L. Yang, L.Y. Zheng, Y.Y. Pan, Z.F. Cao, Z.Q. Zhang, Q.S. Zhou, B. Yang, and C. Cao. 2014. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses vasculogenic mimicry and proliferation of highly aggressive pancreatic cancer PaTu8988 cells. B.M.C. Cancer 14: 373.

    Article  Google Scholar 

  16. Snigdha, S., E.D. Smith, G.A. Prieto, and C.W. Cotman. 2012. Caspase-3 activation as a bifurcation point between plasticity and cell death. Neuroscience Bulletin 28: 14–24.

    Article  CAS  PubMed  Google Scholar 

  17. Shi, Z.J., D.Y. Ouyang, J.S. Zhu, L.H. Xu, and X.H. He. 2012. Histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits anti-inflammatory activities through induction of mitochondrial damage and apoptosis in activated lymphocytes. International Immunopharmacology 12: 580–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y.C., W.Z. Kong, L.H. Xing, and X. Yang. 2014. Effects and mechanism of suberoylanilide hydroxamic acid on the proliferation and apoptosis of human hepatoma cell line Bel-7402. Journal of BUON 19: 698–704.

    PubMed  Google Scholar 

  19. Matés, J.M., J.A. Segura, F.J. Alonso, and J. Márquez. 2012. Oxidative stress in apoptosis and cancer: an update. Archives of Toxicology 86: 1649–65.

    Article  PubMed  Google Scholar 

  20. Yan, C., D. Kong, D. Ge, Y. Zhang, X. Zhang, C. Su, and X. Cao. 2015. Mitomycin C induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via a mitochondrial-mediated pathway. Cellular Physiology and Biochemistry 35: 1125–36.

    Article  CAS  PubMed  Google Scholar 

  21. Shin, G.C., C. Kim, J.M. Lee, W.S. Cho, S.G. Lee, M. Jeong, J. Cho, and K. Lee. 2009. Apigenin-induced apoptosis is mediated by reactive oxygen species and activation of ERK1/2 in rheumatoid fibroblast-like synoviocytes. Chemico-Biological Interactions 182: 29–36.

    Article  CAS  PubMed  Google Scholar 

  22. Park, S., J.A. Park, Y.E. Kim, S. Song, H.J. Kwon, and Y. Lee. 2015. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress & Chaperones 20: 149–57.

    Article  CAS  Google Scholar 

  23. Blakely, C.M., E. Pazarentzos, V. Olivas, S. Asthana, J.J. Yan, I. Tan, G. Hrustanovic, E. Chan, L. Lin, D.S. Neel, W. Newton, K.L. Bobb, T.R. Fouts, J. Meshulam, M.A. Gubens, D.M. Jablons, J.R. Johnson, S. Bandyopadhyay, N.J. Krogan, and T.G. Bivona. 2015. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Reports 11: 98–110.

    Article  CAS  PubMed  Google Scholar 

  24. Kao, D.D., S.R. Oldebeken, A. Rai, E. Lubos, J.A. Leopold, J. Loscalzo, and D.E. Handy. 2013. Tumor necrosis factor-α-mediated suppression of dual-specificity phosphatase 4: crosstalk between NFκB and MAPK regulates endothelial cell survival. Molecular and Cellular Biochemistry 382: 153–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Li, X., and S.S. Makarov. 2006. An essential role of NF-kappaB in the “tumor-like” phenotype of arthritic synoviocytes. Proceedings of the National academy of Sciences of the United States of America 103: 17432–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kim, S.K., K.Y. Park, W.C. Yoon, S.H. Park, K.K. Park, D.H. Yoo, and J.Y. Choe. 2011. Melittin enhances apoptosis through suppression of IL-6/sIL-6R complex-induced NF-κB and STAT3 activation and Bcl-2 expression for human fibroblast-like synoviocytes in rheumatoid arthritis. Joint, Bone, Spine 78: 471–7.

    Article  CAS  PubMed  Google Scholar 

  27. Buggins, A.G., C. Pepper, P.E. Patten, S. Hewamana, S. Gohil, J. Moorhead, N. Folarin, D. Yallop, N.S. Thomas, G.J. Mufti, C. Fegan, and S. Devereux. 2010. Interaction with vascular endothelium enhances survival in primary chronic lymphocytic leukemia cells via NF-kappaB activation and de novo gene transcription. Cancer Research 70: 7523–33.

    Article  CAS  PubMed  Google Scholar 

  28. Audo, R., B. Combe, B. Coulet, J. Morel, and M. Hahne. 2009. The pleiotropic effect of TRAIL on tumor-like synovial fibroblasts from rheumatoid arthritis patients is mediated by caspases. Cell Death and Differentiation 16: 1227–37.

    Article  CAS  PubMed  Google Scholar 

  29. Grabiec A.M., Angiolilli C., Hartkamp L.M., van Baarsen L.G., Tak P.P., Reedquist K.A. 2014. JNK-dependent downregulation of FoxO1 is required to promote the survival of fibroblast-like synoviocytes in rheumatoid arthritis. Annals of the Rheumatic Diseases. 2014 May 8.

  30. Lin, H.S., C.Y. Hu, H.Y. Chan, Y.Y. Liew, H.P. Huang, L. Lepescheux, E. Bastianelli, R. Baron, G. Rawadi, and P. Clément-Lacroix. 2007. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. British Journal of Pharmacology 150: 862–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ru Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Pan, J., Wang, Jd. et al. Suberoylanilide Hydroxamic Acid, an Inhibitor of Histone Deacetylase, Induces Apoptosis in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Inflammation 39, 39–46 (2016). https://doi.org/10.1007/s10753-015-0220-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0220-3

KEY WORDS

Navigation