Skip to main content
Log in

I n Vitro Anti-inflammatory and Immunomodulatory Effects of Ciprofloxacin or Azithromycin in Staphylococcus aureus-Stimulated Murine Macrophages are Beneficial in the Presence of Cytochalasin D

  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

We hypothesized that if internalization of Staphylococcus aureus could be blocked by using cytochalasin D (an inhibitor of phagocytosis and phagolysosome fusion), then the intracellular entry and survival of the pathogen in host’s phagocytic cells recruited to the inflammatory site can be restricted. At the same time, if we use antimicrobial agents (e.g., ciprofloxacin and azithromycin) having potent intracellular and extracellular microbicidal activity against the bacterium that have not entered into the phagosome and remains adhered to the phagocytic cell membrane, then they can be eradicated from the site of infection without compromising the host cell. To validate this, role of ciprofloxacin (CIP) and azithromycin (AZM) in eliminating S. aureus by suppressing the phagocytic activity of macrophages with cytochalasin D before infection was investigated. CIP and AZM were used either alone or in combination with cytochalasin D. Supernatant and lysate obtained from the culture of macrophages were used for quantification of reactive oxygen species, lysozymes, antioxidant enzymes, and cytokines produced. Azithromycin was better than ciprofloxacin in combination with cytochalasin D for eradicating S. aureus and regulating cytokine release. Further studies are required for ensuring proper delivery of this combination at the site of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AZM:

Azithromycin

CIP:

Ciprofloxacin

CPCSEA:

Committee for the Purpose of Control and Supervision of Experiments on Animals

DMSO:

Dimethyl sulfoxide

DTNB:

5,5′-Dithiobis-2-nitrobenzoic acid

ELISA:

Enzyme-inked immunosorbent assay

FBS:

Fetal bovine serum

FIC:

Fractional inhibitory concentration

HBSS:

Hank’s balanced salt solution

IFN-γ:

Interferon-gamma

IL:

Interleukin

IU:

International unit

MHB:

Mueller-Hinton broth

MRSA:

Methicillin-resistant S. aureus

NADPH:

Nicotinamide adenine dinucleotide phosphatase

NaOH:

Sodium hydroxide

NCCLS:

National Committee for Clinical Laboratory Standards

NF-κB:

Nuclear factor-kappa beta

OD:

Optical density

PMN:

Polymorphonuclear neutrophil

RPMI:

Roswell Park Memorial Institute

SOD:

Superoxide dismutase

TCA:

Trichloroacetic acid

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-alpha

Tris–EDTA–HCL:

Tris-ethylenediamine hydrochloric acid

TSST:

Toxic shock syndrome toxin

VRSA:

Vancomycin-resistant S. aureus strains

REFERENCES

  1. Lowy, F.D. 1998. Staphylococcus aureus infections. The New England Journal of Medicine 339: 520–532.

    Article  PubMed  CAS  Google Scholar 

  2. Brouillette, E., G. Grondin, L. Shkreta, P. Lacasse, and B.G. Talbot. 2003. In vivo and in vitro demonstration of that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin binding proteins. Microbial Pathogenesis 35: 159–168.

    Article  PubMed  CAS  Google Scholar 

  3. Gordon, R.J., and F.D. Lowy. 2008. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clinical Infectious Diseases 46: 50–59.

    Article  Google Scholar 

  4. Foster, T.J. 2005. Immune evasion by staphylococci. Nature Reviews Microbiology 3: 948–958.

    Article  PubMed  CAS  Google Scholar 

  5. Zetola, N., J.S. Francis, E.L. Nuermberger, and W.R. Bishai. 2005. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infectious Diseases 5: 275–286.

    Article  Google Scholar 

  6. Hiramatsu, K. 2001. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infectious Diseases 1: 147–155.

    Article  CAS  Google Scholar 

  7. Gresham, H.D., J.H. Lowrance, T.E. Caver, B.S. Wilson, A.L. Cheung, and F.P. Lindberg. 2000. Survival of Staphylococcus aureus inside neutrophils contributes to infection. Journal of Immunology 164: 3713–3722.

    Article  CAS  Google Scholar 

  8. Hudson, M.C., W.K. Ramp, N.C. Nicholson, A.S. Williams, and M.T. Nousiainen. 1995. Internalization of Staphylococcus aureus by cultured osteoblasts. Microbial Pathogenesis 19: 409–419.

    Article  PubMed  CAS  Google Scholar 

  9. Bayles, K.W., C.A. Wesson, L.E. Liou, L.K. Fox, G.A. Bohach, and W.R. Trumble. 1998. Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infection and Immunity 66: 336–342.

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Menzies, B.E., and I. Kourteva. 1998. Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infection and Immunity 66: 5994–5998.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Das, D., S.S. Saha, and B. Bishayi. 2008. Intracellular survival of Staphylococcus aureus: correlating production of catalase and superoxide dismutase with levels of inflammatory cytokines. Inflammation Research 57: 340–349.

    Article  PubMed  CAS  Google Scholar 

  12. Das, D., and B. Bishayi. 2010. Contribution of catalase and superoxide dismutase to the intracellular survival of clinical isolates of Staphylococcus aureus in murine macrophages. Indian Journal of Microbiology 50: 375–384.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Das, D., and B. Bishayi. 2009. Staphylococcal catalase protects intracellularly survived bacteria by destroying H2O2 produced by the murine peritoneal macrophages. Microbial Pathogenesis 47: 57–67.

    Article  PubMed  CAS  Google Scholar 

  14. Lowy, F.D. 2000. Is Staphylococcus aureus an intracellular pathogen? Trends in Microbiology 8: 341–343.

    Article  PubMed  CAS  Google Scholar 

  15. Mal, P., K. Dutta, D. Bandyopadhyay, A. Basu, R. Khan, and B. Bishayi. 2013. Azithromycin in combination with riboflavin decreases the severity of Staphylococcus aureus infection induced septic arthritis by modulating the production of free radicals and endogenous cytokines. Inflammation Research 62: 259–273.

    Article  PubMed  CAS  Google Scholar 

  16. Mal, P., S. Dutta, D. Bandyopadhyay, K. Dutta, A. Basu, and B. Bishayi. 2012. Gentamicin in combination with ascorbic acid regulates the severity of Staphylococcus aureus infection-induced septic arthritis in mice. Scandinavian Journal of Immunology 76: 528–540.

    Article  PubMed  CAS  Google Scholar 

  17. Mal, P., D. Ghosh, D. Bandyopadhyay, K. Dutta, and B. Bishayi. 2012. Ampicillin alone and in combination with riboflavin modulates Staphylococcus aureus infection induced septic arthritis in mice. Indian Journal of Experimental Biology 50: 677–689.

    PubMed  CAS  Google Scholar 

  18. Rogers, D.E., and R. Tompsett. 1952. The survival of staphylococci within human leukocytes. Journal of Experimental Medicine 95: 209–230.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Voyich, J.M., K.R. Braughton, D.E. Sturdevant, A.R. Whitney, B. Saıd-Salim, S.F. Porcella, R.D. Long, D.W. Dorward, D.J. Gardner, B.N. Kreiswirth, J.M. Musser, and F.R. DeLeo. 2005. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. Journal of Immunology 175: 3907–3919.

    Article  CAS  Google Scholar 

  20. Kubica, M., K. Guzik, J. Koziel, M. Zarebski, and W. Richter. 2008. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS ONE e3: 1409.

    Article  CAS  Google Scholar 

  21. Liu, C., A. Bayer, S.E. Cosgrove, R.S. Daum, S.K. Fridkin, R.J. Gorwitz, S.L. Kaplan, A.W. Karchmer, D.P. Levine, B.E. Murray, M. J Rybak, D.A. Talan, and H.F. Chambers. 2012. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clinical Infectious Diseases 54: 132–173.

    Google Scholar 

  22. Underhill, D.M., and H. Goodridge. 2012. Information processing during phagocytosis. Nature Reviews Immunology 12: 492–502.

    Article  PubMed  CAS  Google Scholar 

  23. Pechère, J.C. 1991. The activity of azithromycin in animal models of infection. European Journal of Clinical Microbiology and Infectious Diseases 2: 114–118.

    Google Scholar 

  24. Van den Broek, P.J. 1991. Activity of antibiotics against micro-organisms ingested by mononuclear phagocytes. European Journal of Clinical Microbiology & Infectious Diseases 10: 114–118.

    Article  Google Scholar 

  25. Krut, O., O. Utermohlen, X. Schlossherr, and M. Kronke. 2003. Strain specific association of cytotoxic activity and virulence of clinical Staphylococcus aureus isolates. Infection and Immunity 71: 2716–2723.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Murai, M., K. Seki, J. Sakurada, A. Usui, and S. Masuda. 1993. Effects of cytochalasins B and D on Staphylococcus aureus adherence to and ingestion by mouse renal cells from primary culture. Microbiology and Immunology 37: 69–73.

    Article  PubMed  CAS  Google Scholar 

  27. Schliwa, M. 1982. Action of cytochalasin D on cytoskeletal networks. Journal of Cell Biology 92: 79–91.

    Article  PubMed  CAS  Google Scholar 

  28. Cooper, J.A. 1987. Effects of cytochalasin and phalloidin on actin. Journal of Cell Biology 105: 1473–1478.

    Article  PubMed  CAS  Google Scholar 

  29. Majhi, A., K. Kundu, R. Adhikary, M. Banerjee, S. Mahanti, A. Basu, and B. Bishayi. 2014. Combination therapy with ampicilllin and azithromycin down regulates Streptococcus pneumoniae induced inflammation in mice. Journal of Inflammation 11: 4. doi:10.1186/1476-9255.

    Article  CAS  Google Scholar 

  30. Majhi, A., R. Adhikary, A. Bhattacharyya, S. Mahanti, and B. Bishayi. 2014. Levofloxacin and ceftriaxone in combination attenuates lung inflammation in a mouse model of bacteremic pneumonia by multi-drug resistant Streptococcus pneumoniae via inhibition of cytolytic activities of pneumolysin and autolysin. Antimicrobial Agents and Chemotherapy 58: 5164–5180.

  31. Ishimatsu, Y., J. Kadota, T. Isashita, T. Nagata, H. Ishii, C. Shikuwa, H. Kaida, H. Mukae, and S. Kohno. 2004. Macrolide antibiotics induce apoptosis of human peripheral lymphocytes in vitro. International Journal of Antimicrobial Agents 24: 247–253.

    Article  PubMed  CAS  Google Scholar 

  32. Hodge, S., G. Hodge, S. Brozyna, H. Jersmann, M. Holmes, and P.N. Reynolds. 2006. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. European Respiratory Journal 28: 486–495.

    Article  PubMed  CAS  Google Scholar 

  33. Jun, Y.T., H.J. Kim, M.J. Song, J.H. Lim, D.G. Lee, K.J. Han, S.M. Choi, J.H. Yoo, W.S. Shin, and J.H. Choi. 2003. In vitro effects of ciprofloxacin and roxithromycin on apoptosis of jurkat T lymphocytes. Antimicrobial Agents and Chemotherapy 47: 1161–1164.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Yamaryo, T., K. Oishi, H. Yoshimine, Y. Tsuchihashi, K. Matsushima, and T. Nagatake. 2003. Fourteen member macrolides promote the phosphatidylserine receptor dependent phagocytosis of apoptotic neutrophils by alveolar macrophages. Antimicrobial Agents and Chemotherapy 47: 48–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Lin, H.C., C.H. Wang, C.Y. Liy, C.T. Yu, and H.P. Kuo. 2000. Erytrhomycin inhibits beta-2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respiratory Medicine 94: 654–660.

    Article  PubMed  CAS  Google Scholar 

  36. Matsuoka, N., K. Eguchi, A. Kawakami, M. Tsuboi, Y. Kawabe, T. Aoyagi, and S. Nagataki. 1996. Inhibitory effect of clarithromycin on co-stimulatory molecule expression and cytokine production by synovial fibroblast-like cells. Clinical and Experimental Immunology 104: 501–508.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Ives, T.J., U.E. Schwab, E.S. Ward, and I.H. Hall. 2003. In-vitro anti-inflammatory and immunomodulatory effects of grepafloxacin in zymogen A- or Staphylococcus aureus-stimulated human THP-1 monocytes. Journal of Infection and Chemotherapy 9: 134–143.

    Article  PubMed  CAS  Google Scholar 

  38. Cigana, C., B.M. Assael, and P. Melotti. 2007. Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrobial Agents and Chemotherapy 51: 975–981.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Culic, O., I. Erakovic, K. Cepelak, K. Barisic, K. Brajsa, Z. Ferencic, R. Galović, I. Glojnarić, Z. Manojlović, V. Munić, R. Novak-Mircetić, V. Pavicić-Beljak, M. Sucić, M. Veljaca, T. Zanić-Grubisić, and M.J. Parnham. 2002. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. European Journal of Pharmacology 450: 277–289.

    Article  PubMed  CAS  Google Scholar 

  40. Tkalcevic, I., V.B. Bosnjak, B. Hrvacic, M. Bosnar, N. Marjanovic, Z. Ferencic, K. Situm, O. Culić, M.J. Parnham, and V. Eraković. 2006. Anti-inflammatory activity of azithromycin attenuates the effects of lipopolysaccharide administration in mice. European Journal of Pharmacology 539: 131–138.

    Article  CAS  Google Scholar 

  41. Aghai, Z.H., A. Kode, J.G. Saslow, T. Nakhla, S. Farhath, G.E. Stahl, R. Eydelman, L. Strande, P. Leone, I. Rahman, S. Farhath, G.E. Stahl, R. Eydelman, L. Strande, P. Leone, and I. Rahman. 2007. Azithromycin suppresses activation of nuclear factor kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants. Pediatric Research 62: 483–488.

    Article  PubMed  CAS  Google Scholar 

  42. Huan, L., and K. Neil. 2007. Glutathione depletion down-regulates tumor necrosis factor α-induced NF-κB activity via IκB kinase-dependent and -independent mechanisms. The Journal of Biological Chemistry 282: 29470–29481.

    Article  CAS  Google Scholar 

  43. Cho, S., Y. Urata, and T. Ilada. 1998. Glutathione down-regulates the phosphorylation of I kappa B: auto-loop regulation of the NF-kappa B-mediated expression of NF-κB subunits by TNF-alpha in mouse vascular endothelial cells. Biochemical and Biophysical Research Communications 253: 104–108.

    Article  PubMed  CAS  Google Scholar 

  44. Cozzarelli, N.R. 1980. DNA gyrase and the supercoiling of DNA. Science 207: 953–960.

    Article  PubMed  CAS  Google Scholar 

  45. Drlica, K. 1984. Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiological Reviews 48: 273–289.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Gellert, M. 1981. DNA topoisomerases. Annual Review of Biochemistry 50: 879–910.

    Article  PubMed  CAS  Google Scholar 

  47. Wolfson, S.J., and C.D. Hooper. 1985. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrobial Agents Chemotherapy 28(4): 581–586.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Cowan, S.T., and K.J. Steel. 1974. Cowan and steel’s manual for the identification of medical bacteria, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  49. Lancette, G.A., and S.R. Tatini. 1992. Staphylococcus aureus. In Compendium of methods for the microbiological examination of foods, 3rd ed, ed. C. Vanderzant and D.F. Splittstoesser, 533–550. Washington: American Public Health Association.

    Google Scholar 

  50. Kloos, W.E., D.W. Lambe Jr., and A. Balows. 1991. Staphylococcus. In Manual of clinical microbiology, 5th ed, ed. A. Balows, W.J. Hausler Jr., K.L. Herrmann, H.D. Isenberg, and H.J. Shadomy, 222–237. Washington D.C.: American Society for Microbiology.

    Google Scholar 

  51. Evans, J.B., and W.E. Kloos. 1972. Use of shake cultures in a semisolid thioglycolate medium for differentiating staphylococci from micrococci. Applied Microbiology 23: 326–331.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Bayliss, B.G., and E.R. Hall. 1965. Plasma coagulation by organisms other than Staphylococcus aureus. Journal of Bacteriology 89: 101–105.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Freeman, R., D. Burdess, and S. Smith. 1994. Crystal violet reactions of coagulase negative staphylococci. Journal of Clinical Pathology 47: 283–285.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. NCCLS. 2008. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 6th ed. NCCLS document. M7-A6. NCCLS, Wayne, Pa

  55. Odds, F.C. 2003. Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy 52: 601–607.

    Google Scholar 

  56. Leigh P.C.J., Van Furth R., Van Zwet T.L. 1986. In vitro determination of phagocytosis and intracellular killing by polymorphonuclear and mononuclear phagocytes. In: Weir D.M., eds. Handbook of experimental immunology. Blackwell Scientific publications: Oxford, pp. 104:46.1-46.26.

  57. Absolom, D.R. 1986. Basic methods for the study of phagocytosis. Methods in Enzymology 132: 95–180.

  58. Sedlak, J., and R.H. Lindsay. 1968. Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry 25: 192–205.

    Article  PubMed  CAS  Google Scholar 

  59. Colowick, S.P., N.O. Kaplan, and D.R. Absolom. 1986. Basic methods for the study of phagocytosis. In Methods in enzymology: part J. Immunochemical techniques, ed. G.D. Sabato and J. Everse, 160. New York: Academic.

    Google Scholar 

  60. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

  61. Tulkens, P.M. 1991. Intracellular distribution and activity of antibiotics. European Journal of Clinical Microbiology and Infectious Diseases 10: 100–106.

    Article  PubMed  CAS  Google Scholar 

  62. Ignatowski, T.A., and J.M. Bidlack. 1999. Differential kappa-opioid receptor expression on mouse lymphocytes at varying stages of maturation and on mouse macrophages after selective elicitation. Journal of Pharmacology and Experimental Therapeutics 290: 863–870.

    PubMed  CAS  Google Scholar 

  63. Polliack, A., and S. Gordon. 1975. Scanning electron microscopy of murine macrophages. Surface characteristics during maturation, activation, and phagocytosis. Laboratory Investigation 33: 469–477.

    PubMed  CAS  Google Scholar 

  64. Aslam, A.F., A.K. Aslam, A.C. Thakur, B.C. Vasavada, and I.A. Khan. 2005. Staphylococcus aureus infective endocarditis and septic pulmonary embolism after septic abortion. International Journal of Cardiology 105: 233–235.

    Article  PubMed  Google Scholar 

  65. Cossart, P., and P.J. Sansonetti. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304: 242–248.

    Article  PubMed  CAS  Google Scholar 

  66. Weihing, R.R. 1978. In vitro interactions of cytochalasins with contractile proteins. Frontiers of Biology 46: 431–444.

    PubMed  CAS  Google Scholar 

  67. Elliott, J.A., and W.C. Jr. Winn. 1986. Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infection and Immunity 51: 31–36.

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Mogensen, T.H. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical Microbiology Reviews 22: 240–273.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Nau, R., and H. Eiffert. 2002. Modulation of release of pro-inflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome of sepsis and meningitis. Clinical Microbiology Reviews 15: 95–110.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Labro, M.T. 1998. Anti-inflammatory activity of macrolides: a new therapeutic potential? Journal of Antimicrobial Chemotherapy 41: 37–46.

    Article  PubMed  CAS  Google Scholar 

  71. Tamaoki, J. 2004. The effects of macrolides on inflammatory cells. Chest 125: 41S–50S.

    Article  PubMed  CAS  Google Scholar 

  72. Stortz, G., L.A. Tartaglia, and B.N. Ames. 1990. Transcriptional regulation of oxidative stress inducible genes: direct activation by oxidation. Science 248: 189–194.

    Article  Google Scholar 

  73. Bentley, J.K., and P.W. Reed. 1981. Activation of superoxide production and differential exocytosis in polymorphonuclear leukocytes by cytochalasins A, B, C, D and E. Effects of various ions. Biochemica et Biophysica Acta 678: 238–244.

    Article  CAS  Google Scholar 

  74. Okamura, N., K. Hanakura, M. Kodakari, and S. Ishibashi. 1980. Cooperation of cytochalasin D and anti-microtubular agents in stimulating superoxide anion production in polymorphonuclear leukocytes. Journal of Biochemistry 80: 139–144.

    Google Scholar 

  75. Goswami, M., S.H. Mangoli, and N. Jawali. 2006. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrobial Agents and Chemotherapy 50: 949–954.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Levert, H., B. Gressier, I. Moutard, C. Brunet, T. Dine, M. Luyckx, M. Cazin, and J.C. Cazin. 1998. Azithromycin impact on neutrophil oxidative metabolism dependent on exposure time. Inflammation 22: 191–201.

    Article  PubMed  CAS  Google Scholar 

  77. Kanoh, S., and B.K. Rubin. 2010. Mechanisms of actions and clinical application of macrolide as immunomodulatory medications. Clinical Microbiology Reviews 23: 590–615.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. DeMorais, N.G., T.B. da Costa, T.M. de Almeida, M.S. Severo, and C.M.M.B. de Castro. 2013. Immunological parameters of macrophages infected by methicillin resistant/sensitive Staphylococcus aureus. J Bras Patol Med Lab 49: 84–90.

    Article  Google Scholar 

  79. Chakroborty, S.P., and S. Roy. 2014. In vitro Staphylococcus aureus-induced oxidative stress in mice murine peritoneal macrophages: a duration-dependent approach. Asian Pacific Journal of Tropical Biomedicine 4 (suppl1): S298–S304.

  80. Van Dissel, J.T., P. Van Langevelde, R.G. Westendorp, K. Kwappenberg, and M. Frolich. 1998. Anti-inflammatory cytokine profile and mortality in febrile patients. Lancet 351: 950–953.

    Article  PubMed  Google Scholar 

  81. Spentzas, T., R.K. Shapley, C.A. Aguirre, E. Meals, L. Lazar, M.S. Rayburn, B.S. Walker, and B.K. English. 2011. Ketamine inhibits tumor necrosis factor secretion by RAW264.7 murine macrophages stimulated with antibiotic-exposed strains of community-associated, methicillin-resistant Staphylococcus aureus. BMC Immunology 12: 11. doi:10.1186/1471-2172-12-11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Akira, S., and S. Sato. 2003. Toll-like receptors and their signalling mechanisms. Scandinavian Journal of Infectious Diseases 35: 555–562.

    Article  PubMed  CAS  Google Scholar 

  83. Plowden, J., M. Renshaw-Hoelscher, C. Engleman, J. Katz, and S. Sambhara. 2004. Innate immunity in aging: impact on macrophage function. Aging Cell 4: 161–167.

    Article  CAS  Google Scholar 

  84. Nizet, V. 2007. Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. Journal of Allergy and Clinical Immunology 120: 13–22.

    Article  PubMed  CAS  Google Scholar 

  85. Escaich, S. 2010. Novel agents to inhibit microbial virulence and pathogenicity. Expert Opinion on Therapeutic Patents 10: 1401–1418.

    Article  Google Scholar 

  86. Clatworthy, A.E., E. Pierson, and D.T. Hung. 2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chemical Biology 9: 541–548.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Department of Biotechnology (DBT), Government of West Bengal, Calcutta, West Bengal [Grant Number: vide sanction order 786-BT/Estt/RD-4/13 date: 30.10.2013 to BB] for funding this project. The author (Biswadev Bishayi) is indebted to the Department of Science and Technology, Government of India for providing with the instruments procured under the DST-PURSE program to the Department of Physiology, University of Calcutta.

CONFLICT OF INTEREST

For the manuscript entitled “In vitro anti-inflammatory and immunomodulatory effects of ciprofloxacin or azithromycin in Staphylococcus aureus stimulated murine macrophages are beneficial in the presence of cytochalasin D” by Somrita Dey et al., the authors declared that they have no conflict of interest for this manuscript toward submission in Inflammation. The authors also state that they do not have a direct financial relation with the commercial identities mentioned in this manuscript that might lead to a conflict of interest for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswadev Bishayi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Majhi, A., Mahanti, S. et al. I n Vitro Anti-inflammatory and Immunomodulatory Effects of Ciprofloxacin or Azithromycin in Staphylococcus aureus-Stimulated Murine Macrophages are Beneficial in the Presence of Cytochalasin D. Inflammation 38, 1050–1069 (2015). https://doi.org/10.1007/s10753-014-0070-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0070-4

KEY WORDS

Navigation