Skip to main content

Advertisement

Log in

Anti-inflammatory Effects of Baicalin, Baicalein, and Wogonin In Vitro and In Vivo

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Here, three structurally related polyphenols found in the Chinese herb Huang Qui, namely baicalin, baicalein, and wogonin, were examined for its effects on inflammatory responses by monitoring the effects of baicalin, baicalein, and wogonin on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. We found that each compound inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of monocytes to human endothelial cells. Each compound induced potent inhibition of phorbol-12-myristate 13-acetate and LPS-induced endothelial cell protein C receptor shedding. It also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, each compound suppressed the production of tumor necrosis factor-α or interleukin-6 and the activation of nuclear factor-κB or extracellular regulated kinases 1/2 by LPS. Moreover, treatment with each compound resulted in reduced LPS-induced lethal endotoxemia. These results suggest that baicalin, baicalein, and wogonin posses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Russell, J.A. 2006. Management of sepsis. New England Journal of Medicine 355: 1699–1713.

    Article  CAS  PubMed  Google Scholar 

  2. Mehta, D., and A.B.. Malik. 2006. Signaling mechanisms regulating endothelial permeability. Physiological Reviews 86: 279–367.

  3. Goldblum, S.E., T.W. Brann, X. Ding, J. Pugin, and P.S. Tobias. 1994. Lipopolysaccharide (LPS)-binding protein and soluble CD14 function as accessory molecules for LPS-induced changes in endothelial barrier function, in vitro. Journal of Clinical Investigation 93: 692–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Baluk, P., L.C. Yao, J. Feng, et al. 2009. TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. Journal of Clinical Investigation 119: 2954–2964.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Varani, J., and P.A. Ward. 1994. Mechanisms of endothelial cell injury in acute inflammation. Shock 2: 311–319.

    Article  CAS  PubMed  Google Scholar 

  6. Aird, W.C. 2007. Endothelium as a therapeutic target in sepsis. Current Drug Targets 8: 501–507.

    Article  CAS  PubMed  Google Scholar 

  7. Czermak, B.J., M. Breckwoldt, Z.B. Ravage, et al. 1999. Mechanisms of enhanced lung injury during sepsis. American Journal of Pathology 154: 1057–1065.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Xu, J., D. Qu, N.L. Esmon, and C.T. Esmon. 2000. Metalloproteolytic release of endothelial cell protein C receptor. Journal of Biological Chemistry 275: 6038–6044.

    Article  CAS  PubMed  Google Scholar 

  9. Kurosawa, S., D.J. Stearns-Kurosawa, N. Hidari, and C.T. Esmon. 1997. Identification of functional endothelial protein C receptor in human plasma. Journal of Clinical Investigation 100: 411–418.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Liaw, P.C., P.F. Neuenschwander, M.D. Smirnov, and C.T. Esmon. 2000. Mechanisms by which soluble endothelial cell protein C receptor modulates protein C and activated protein C function. Journal of Biological Chemistry 275: 5447–5452.

    Article  CAS  PubMed  Google Scholar 

  11. Kurosawa, S., D.J. Stearns-Kurosawa, C.W. Carson, A. D’Angelo, P. Della Valle, and C.T. Esmon. 1998. Plasma levels of endothelial cell protein C receptor are elevated in patients with sepsis and systemic lupus erythematosus: lack of correlation with thrombomodulin suggests involvement of different pathological processes. Blood 91: 725–727.

    CAS  PubMed  Google Scholar 

  12. Kumar, S., and A.K. Pandey. 2013. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013: 162750.

    PubMed Central  PubMed  Google Scholar 

  13. Kubo, M., T. Asano, H. Shiomoto, and H. Matsuda. 1994. Studies on Rehmanniae radix. I. Effect of 50 % ethanolic extract from steamed and dried rehmanniae radix on hemorheology in arthritic and thrombosic rats. Biological and Pharmaceutical Bulletin 17: 1282–1286.

    Article  CAS  PubMed  Google Scholar 

  14. Kubo, M., H. Matsuda, M. Tanaka, et al. 1984. Studies on Scutellariae radix. VII. Anti-arthritic and anti-inflammatory actions of methanolic extract and flavonoid components from Scutellariae radix. Chemical and Pharmaceutical Bulletin (Tokyo) 32: 2724–2729.

    Article  CAS  Google Scholar 

  15. Chen, Y.C., S.C. Shen, L.G. Chen, T.J. Lee, and L.L. Yang. 2001. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochemical Pharmacology 61: 1417–1427.

    Article  CAS  PubMed  Google Scholar 

  16. Chiu, J.H., I.S. Lay, M.Y. Su, et al. 2002. Tumor necrosis factor-producing activity of wogonin in RAW 264.7 murine macrophage cell line. Planta Medica 68: 1036–1039.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, W., E.J. Yang, S.K. Ku, K.S. Song, and J.S. Bae. 2012. Anticoagulant activities of oleanolic acid via inhibition of tissue factor expressions. BMB Reports 45: 390–395.

    Article  CAS  PubMed  Google Scholar 

  18. Bae, J.S., and A.R. Rezaie. 2013. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Reports 46: 544–549.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bae, J.S., and A.R. Rezaie. 2011. Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood 118: 3952–3959.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kim, T.H., S.K. Ku, and J.S. Bae. 2011. Inhibitory effects of kaempferol-3-O-sophoroside on HMGB1-mediated proinflammatory responses. Food and Chemical Toxicology 50: 1118–1123.

    Article  PubMed  Google Scholar 

  21. Ku, S.K., E.J. Yang, K.S. Song, and J.S. Bae. 2013. Rosmarinic acid down-regulates endothelial protein C receptor shedding in vitro and in vivo. Food and Chemical Toxicology 59: 311–315.

    Article  CAS  PubMed  Google Scholar 

  22. Miller, M.A., A.S. Meyer, M.T. Beste, et al. 2013. ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proceedings of the National Academy of Sciences of the United States of America 110: E2074–E2083.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lee, W., S.K. Ku, and J.S. Bae. 2013. Emodin-6-O-beta-D-glucoside down-regulates endothelial protein C receptor shedding. Archives of Pharmacal Research 36: 1160–1165.

    Article  CAS  PubMed  Google Scholar 

  24. Che, W., N. Lerner-Marmarosh, Q. Huang, et al. 2002. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circulation Research 90: 1222–1230.

    Article  CAS  PubMed  Google Scholar 

  25. Bae, J.W., and J.S. Bae. 2011. Barrier protective effects of lycopene in human endothelial cells. Inflammation Research 60: 751–758.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, T.H., S.K. Ku, I.C. Lee, and J.S. Bae. 2012. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Reports 45: 200–205.

    Article  CAS  PubMed  Google Scholar 

  27. Bae, J.S., W. Lee, and A.R. Rezaie. 2012. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. Journal of Thrombosis and Haemostasis. 10: 1145–1151.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lee, J.D., J.E. Huh, G. Jeon, et al. 2009. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. International Immunopharmacology 9: 268–276.

    Article  CAS  PubMed  Google Scholar 

  29. Fuseler, J.W., D.M. Merrill, J.A. Rogers, M.B. Grisham, and R.E. Wolf. 2006. Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. Microscopy and Microanalysis 12: 269–276.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas, M.J., Q. Chen, C. Franklin, and L.L. Rudel. 1997. A comparison of the kinetics of low-density lipoprotein oxidation initiated by copper or by azobis (2-amidinopropane). Free Radical Biology and Medicine 23: 927–935.

    Article  CAS  PubMed  Google Scholar 

  31. Bowry, V.W., and R. Stocker. 1993. Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. Journal of the American Chemical Society 115: 6029–6044.

    Article  CAS  Google Scholar 

  32. Niki, E., M. Saito, Y. Yoshikawa, Y. Yamamoto, and Y. Kamiya. 1986. Oxidation of lipids. XII. Inhibition of oxidation of soybean phosphatidylcholine and methyl linoleate in aqueous dispersions by uric acid. Bulletin of the Chemical Society of Japan 59: 471–477.

    Article  CAS  Google Scholar 

  33. Hasinoff, B.B., D. Patel, and K.A. O’Hara. 2008. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Molecular Pharmacology 74: 1722–1728.

    Article  CAS  PubMed  Google Scholar 

  34. Berman, R.S., J.D. Frew, and W. Martin. 1993. Endotoxin-induced arterial endothelial barrier dysfunction assessed by an in vitro model. British Journal of Pharmacology 110: 1282–1284.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Goldblum, S.E., X. Ding, T.W. Brann, and J. Campbell-Washington. 1993. Bacterial lipopolysaccharide induces actin reorganization, intercellular gap formation, and endothelial barrier dysfunction in pulmonary vascular endothelial cells: concurrent F-actin depolymerization and new actin synthesis. Journal of Cellular Physiology 157: 13–23.

    Article  CAS  PubMed  Google Scholar 

  36. Walton, K.L., L. Holt, and R.B. Sartor. 2009. Lipopolysaccharide activates innate immune responses in murine intestinal myofibroblasts through multiple signaling pathways. American Journal of Physiology - Gastrointestinal and Liver Physiology 296: G601–G611.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mittelstadt, P.R., J.M. Salvador, A.J. Fornace Jr., and J.D. Ashwell. 2005. Activating p38 MAPK: new tricks for an old kinase. Cell Cycle 4: 1189–1192.

    Article  CAS  PubMed  Google Scholar 

  38. Schnittler, H.J., S.W. Schneider, H. Raifer, et al. 2001. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflügers Archiv 442: 675–687.

    Article  CAS  PubMed  Google Scholar 

  39. Friedl, J., M. Puhlmann, D.L. Bartlett, et al. 2002. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood 100: 1334–1339.

    CAS  PubMed  Google Scholar 

  40. Petrache, I., A. Birukova, S.I. Ramirez, J.G. Garcia, and A.D. Verin. 2003. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. American Journal of Respiratory Cell and Molecular Biology 28: 574–581.

    Article  CAS  PubMed  Google Scholar 

  41. Komarova, Y.A., D. Mehta, and A.B.. Malik. 2007. Dual regulation of endothelial junctional permeability. Science STKE 2007: re8.

  42. Dudek, S.M., and J.G. Garcia. 2001. Cytoskeletal regulation of pulmonary vascular permeability. Journal of Applied Physiology 91: 1487–1500.

    CAS  PubMed  Google Scholar 

  43. Qu, D., Y. Wang, Y. Song, N.L. Esmon, and C.T. Esmon. 2006. The Ser219–>Gly dimorphism of the endothelial protein C receptor contributes to the higher soluble protein levels observed in individuals with the A3 haplotype. Journal of Thrombosis and Haemostasis 4: 229–235.

    Article  CAS  PubMed  Google Scholar 

  44. Qu, D., Y. Wang, N.L. Esmon, and C.T. Esmon. 2007. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ADAM17. Journal of Thrombosis and Haemostasis 5: 395–402.

    Article  CAS  PubMed  Google Scholar 

  45. Menschikowski, M., A. Hagelgans, G. Eisenhofer, and G. Siegert. 2009. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways. Experimental Cell Research 315: 2673–2682.

    Article  CAS  PubMed  Google Scholar 

  46. Frenette, P.S., and D.D. Wagner. 1996. Adhesion molecules—Part II: blood vessels and blood cells. New England Journal of Medicine 335: 43–45.

    Article  CAS  PubMed  Google Scholar 

  47. Frenette, P.S., and D.D. Wagner. 1996. Adhesion molecules—Part 1. New England Journal of Medicine 334: 1526–1529.

    Article  CAS  PubMed  Google Scholar 

  48. Frijns, C.J., and L.J. Kappelle. 2002. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 33: 2115–2122.

    Article  CAS  PubMed  Google Scholar 

  49. Ulbrich, H., E.E. Eriksson, and L. Lindbom. 2003. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends in Pharmacological Sciences 24: 640–647.

    Article  CAS  PubMed  Google Scholar 

  50. Marui, N., M.K. Offermann, R. Swerlick, et al. 1993. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. Journal of Clinical Investigation 92: 1866–1874.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Wung, B.S., C.W. Ni, and D.L. Wang. 2005. ICAM-1 induction by TNFalpha and IL-6 is mediated by distinct pathways via Rac in endothelial cells. Journal of Biomedical Science 12: 91–101.

    Article  CAS  PubMed  Google Scholar 

  52. Lin, W.N., S.F. Luo, C.B. Wu, C.C. Lin, and C.M. Yang. 2008. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: involvement of Src/EGFR/PI3-K/Akt pathway. Toxicology and Applied Pharmacology 228: 256–268.

    Article  CAS  PubMed  Google Scholar 

  53. Ruiz-Torres, M.P., G. Perez-Rivero, M. Rodriguez-Puyol, D. Rodriguez-Puyol, and M.L. Diez-Marques. 2006. The leukocyte-endothelial cell interactions are modulated by extracellular matrix proteins. Cellular Physiology and Biochemistry 17: 221–232.

    Article  CAS  PubMed  Google Scholar 

  54. Javaid, K., A. Rahman, K.N. Anwar, R.S. Frey, R.D. Minshall, and A.B.. Malik. 2003. Tumor necrosis factor-alpha induces early-onset endothelial adhesivity by protein kinase Czeta-dependent activation of intercellular adhesion molecule-1. Circulation Research 92: 1089–1097.

  55. Lockyer, J.M., J.S. Colladay, W.L. Alperin-Lea, T. Hammond, and A.J. Buda. 1998. Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circulation Research 82: 314–320.

    Article  CAS  PubMed  Google Scholar 

  56. Yamagami, H., S. Yamagami, T. Inoki, S. Amano, and K. Miyata. 2003. The effects of proinflammatory cytokines on cytokine-chemokine gene expression profiles in the human corneal endothelium. Investigative Ophthalmology & Visual Science 44: 514–520.

    Article  Google Scholar 

  57. Rose, B.A., T. Force, and Y. Wang. 2010. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiological Reviews 90: 1507–1546.

    Article  CAS  PubMed  Google Scholar 

  58. Ajmone-Cat, M.A., R. De Simone, A. Nicolini, and L. Minghetti. 2003. Effects of phosphatidylserine on p38 mitogen activated protein kinase, cyclic AMP responding element binding protein and nuclear factor-kappaB activation in resting and activated microglial cells. Journal of Neurochemistry 84: 413–416.

    Article  CAS  PubMed  Google Scholar 

  59. Osmond, R.I., A. Sheehan, R. Borowicz, et al. 2005. GPCR screening via ERK 1/2: a novel platform for screening G protein-coupled receptors. Journal of Biomolecular Screening 10: 730–737.

    Article  CAS  PubMed  Google Scholar 

  60. Covert, M.W., T.H. Leung, J.E. Gaston, and D. Baltimore. 2005. Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science 309: 1854–1857.

    Article  CAS  PubMed  Google Scholar 

  61. Alderton, W.K., C.E. Cooper, and R.G. Knowles. 2001. Nitric oxide synthases: structure, function and inhibition. Biochemical Journal 357: 593–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Inoguchi, T., P. Li, F. Umeda, et al. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49: 1939–1945.

    Article  CAS  PubMed  Google Scholar 

  63. Wolfe, K.L., and R.H. Liu. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agricultural and Food Chemistry 55: 8896–8907.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, G., Y. Gong, F.J. Burczynski, and B.B. Hasinoff. 2008. Cell lysis with dimethyl sulphoxide produces stable homogeneous solutions in the dichlorofluorescein oxidative stress assay. Free Radical Research 42: 435–441.

    Article  CAS  PubMed  Google Scholar 

  65. Bae, J.S. 2012. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Archives of Pharmacal Research 35: 1511–1523.

    Article  CAS  PubMed  Google Scholar 

  66. Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420: 885–891.

    Article  CAS  PubMed  Google Scholar 

  67. Bhatia, M., M. He, H. Zhang, and S. Moochhala. 2009. Sepsis as a model of SIRS. Frontiers in Bioscience 14: 4703–4711.

    Article  CAS  Google Scholar 

  68. Bierhaus, A., J. Chen, B. Liliensiek, and P.P. Nawroth. 2000. LPS and cytokine-activated endothelium. Seminars in Thrombosis and Hemostasis 26: 571–587.

    Article  CAS  PubMed  Google Scholar 

  69. Hawiger, J. 2001. Innate immunity and inflammation: a transcriptional paradigm. Immunologic Research 23: 99–109.

    Article  CAS  PubMed  Google Scholar 

  70. Marcus, B.C., C.W. Wyble, K.L. Hynes, and B.L. Gewertz. 1996. Cytokine-induced increases in endothelial permeability occur after adhesion molecule expression. Surgery 120: 411–416. discussion 416-417.

    Article  CAS  PubMed  Google Scholar 

  71. Beynon, H.L., D.O. Haskard, K.A. Davies, R. Haroutunian, and M.J. Walport. 1993. Combinations of low concentrations of cytokines and acute agonists synergize in increasing the permeability of endothelial monolayers. Clinical and Experimental Immunology 91: 314–319.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Sedgwick, J.B., I. Menon, J.E. Gern, and W.W. Busse. 2002. Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration. Journal of Allergy and Clinical Immunology 110: 752–756.

    Article  CAS  PubMed  Google Scholar 

  73. Wei, X.Q., I.G. Charles, A. Smith, et al. 1995. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375: 408–411.

    Article  CAS  PubMed  Google Scholar 

  74. Cuzzocrea, S., P.K. Chatterjee, E. Mazzon, et al. 2002. Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock 18: 169–176.

    Article  PubMed  Google Scholar 

  75. Gunnett, C.A., D.D. Lund, A.K. McDowell, F.M. Faraci, and D.D. Heistad. 2005. Mechanisms of inducible nitric oxide synthase-mediated vascular dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 1617–1622.

    Article  CAS  PubMed  Google Scholar 

  76. Hauser, B., M. Matejovic, and P. Radermacher. 2008. Nitric oxide, leukocytes and microvascular permeability: causality or bystanders? Critical Care 12: 104.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Chung, E.Y., B.H. Kim, J.T. Hong, et al. 2011. Resveratrol down-regulates interferon-gamma-inducible inflammatory genes in macrophages: molecular mechanism via decreased STAT-1 activation. Journal of Nutritional Biochemistry 22: 902–909.

    Article  CAS  PubMed  Google Scholar 

  78. Hoshino, J., E.J. Park, T.P. Kondratyuk, et al. 2010. Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. Journal of Medicinal Chemistry 53: 5033–5043.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Bhaskar, S., V. Shalini, and A. Helen. 2011. Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLR-NF-kappaB signaling pathway. Immunobiology 216: 367–373.

    Article  CAS  PubMed  Google Scholar 

  80. Shan, Y., R. Zhao, W. Geng, et al. 2010. Protective effect of sulforaphane on human vascular endothelial cells against lipopolysaccharide-induced inflammatory damage. Cardiovascular Toxicology 10: 139–145.

    Article  CAS  PubMed  Google Scholar 

  81. Mollace, V., M. Colasanti, C. Muscoli, et al. 1998. The effect of nitric oxide on cytokine-induced release of PGE2 by human cultured astroglial cells. British Journal of Pharmacology 124: 742–746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Wu, C.Y., H.L. Hsieh, M.J. Jou, and C.M. Yang. 2004. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. Journal of Neurochemistry 90: 1477–1488.

    Article  CAS  PubMed  Google Scholar 

  83. Liu, S.F., and A.B.. Malik. 2006. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology—Lung Cellular and Molecular Physiology 290: L622–L645.

  84. Fiebich, B.L., R.D. Butcher, and P.J. Gebicke-Haerter. 1998. Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured microglial cells. Journal of Neuroimmunology 92: 170–178.

    Article  CAS  PubMed  Google Scholar 

  85. Jeon, K.I., X. Xu, T. Aizawa, et al. 2010. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proceedings of the National Academy of Sciences of the United States of America 107: 9795–9800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13: 85–94.

    Article  CAS  PubMed  Google Scholar 

  87. Ghosh, S., M.J. May, and E.B. Kopp. 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annual Review of Immunology 16: 225–260.

    Article  CAS  PubMed  Google Scholar 

  88. Borbiev, T., A.D. Verin, A. Birukova, F. Liu, M.T. Crow, and J.G. Garcia. 2003. Role of CaM kinase II and ERK activation in thrombin-induced endothelial cell barrier dysfunction. American Journal of Physiology—Lung Cellular and Molecular Physiology 285: L43–L54.

    CAS  PubMed  Google Scholar 

  89. Wadgaonkar, R., L. Linz-McGillem, A.L. Zaiman, and J.G. Garcia. 2005. Endothelial cell myosin light chain kinase (MLCK) regulates TNFalpha-induced NFkappaB activity. Journal of Cellular Biochemistry 94: 351–364.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korean government [MSIP] (Grant Nos. 2013-067053).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Additional information

Wonhwa Lee and Sae-Kwang Ku contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Ku, SK. & Bae, JS. Anti-inflammatory Effects of Baicalin, Baicalein, and Wogonin In Vitro and In Vivo . Inflammation 38, 110–125 (2015). https://doi.org/10.1007/s10753-014-0013-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0013-0

KEY WORDS

Navigation