Skip to main content
Log in

57Fe Mössbauer spectroscopic study on the magnetic properties of tantalum-doped maghemite and hematite

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

Unique and distinct structural and magnetic characteristics of Fe2O3 have been continuously studied for their broad potential and applications, and various attempts were conducted to enhance the properties. Ta5+-doped Fe2O3 were synthesized using sol-gel method followed by calcination at various temperatures. The formation mechanism based on PXRD and TEM EDS shows that Ta was included in Fe2O3 structure during γ phase then shifted to the surface during transformation to α phase, resulting in big hematite particle with small particle of FeTaO4 on the surface. Ta doping shows an influence on γ-Fe2O3 by increasing its stability and a significant influence on the magnetic properties of hematite. 1.9%Ta-doped samples calcined at 500 and 700 ºC show the coexistence of antiferromagnetism and weak ferromagnetism at 78 K. For the α-Fe2O3 including 7.4 atomic percent of Ta calcined at 700 ºC, the particle shows large size of 300 nm but there is no Morin transition temperature (TM) at 78 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and materials supporting the findings of the research presented in this manuscript are available upon request. We are committed to promoting transparency and the sharing of research resources to facilitate the replication and verification of our work.

References

  1. Cornell, R.M., Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions Occurances and Uses, 2nd Editio. Wiley-VCH, Weinheim, (2003)

  2. Dr. Damien Faivre: Iron Oxides from Nature to Applications. Wiley-VCH, Weinheim (2016)

    Book  Google Scholar 

  3. Pauling, L., Hendricks, S.B.: The Crystal structure of Hematite and Corundum. J. Am. Chem. Soc. 47, 781–790 (1925)

    Article  CAS  Google Scholar 

  4. Özdemir, Ö., Dunlop, D.J., Berquó, T.S.: Morin transition in hematite: Size dependence and thermal hysteresis. Geochem. Geophys. Geosyst. 9 (2008). https://doi.org/10.1029/2008GC002110/FORMAT/PDF:

  5. De Boer, C.B., Mullender, T.A.T., Dekkers, M.J.: Low-temperature behaviour of haematite: Susceptibility and magnetization increase on cycling through the Morin transition. Geophys. J. Int. 146, 201–216 (2001). https://doi.org/10.1046/j.0956-540X.2001.01443.x

    Article  ADS  Google Scholar 

  6. Fysh, S.A., Clark, P.E.: Aluminous hematite: A mössbauer study. Phys. Chem. Miner. 8, 257–267 (1982). https://doi.org/10.1007/BF00308247

    Article  ADS  CAS  Google Scholar 

  7. Bødker, F., Hansen, M.F., Koch, C.B., Lefmann, K., Mørup, S.: Magnetic properties of hematite nanoparticles. Phys. Rev. B. 61, 6826–6838 (2000)

    Article  ADS  Google Scholar 

  8. Marusak, L.A., Messier, R., White, W.B.: Optical absorption spectrum of hematite, αFe2O3 near IR to UV. J. Phys. Chem. Solids. 41, 981–984 (1980). https://doi.org/10.1016/0022-3697(80)90105-5

    Article  ADS  CAS  Google Scholar 

  9. De Grave, E., Bowen, L.H., Weed, S.B.: Mössbauer study of aluminum-substituted hematites. J. Magn. Magn. Mater. 27, 98–108 (1982). https://doi.org/10.1016/0304-8853(82)90288-8

    Article  ADS  Google Scholar 

  10. Strangway, D.W., McMahon, B.E., Honea, R.M., Larson, E.E.: Superparamagnetism in hematite. Earth Planet. Sci. Lett. 2, 367–371 (1967). https://doi.org/10.1016/0012-821X(67)90158-6

    Article  ADS  CAS  Google Scholar 

  11. Krehula, S., Ristić, M., Reissner, M., Kubuki, S., Musić, S.: Synthesis and properties of indium-doped hematite. J. Alloys Compd. 695, 1900–1907 (2017). https://doi.org/10.1016/j.jallcom.2016.11.022

    Article  CAS  Google Scholar 

  12. Mansour, A.M.: Photocatalytic degradation of methylene blue with hematite nanoparticles synthesized by thermal decomposition of fluoroquinolones oxalato-iron(III) complexes. RSC Adv. 5, 62052–62061 (2015). https://doi.org/10.1039/c5ra12157d

    Article  ADS  CAS  Google Scholar 

  13. Wu, W., Jiang, C., Roy, V.A.L.: Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale. 7, 38–58 (2015). https://doi.org/10.1039/c4nr04244a

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Santhosh, C., Malathi, A., Dhaneshvar, E., Bhatnagar, A., Grace, A.N., Madhavan, J.: Iron Oxide nanomaterials for Water Purification. In: Nanoscale Materials in Water Purification, Elsevier Inc. 431–446, (2018)

  15. Dar, M.I., Shivashankar, S.A.: Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Adv. 4, 4105–4113 (2014). https://doi.org/10.1039/c3ra45457f

    Article  ADS  CAS  Google Scholar 

  16. Da Costa, G.M.: Mössbauer studies of magnetite and Al-substituted maghemites. Hyperfine Interact. 117, 207–243 (1998). https://doi.org/10.1023/A:1012691209853

    Article  ADS  Google Scholar 

  17. Sidhu, P.S.: Transformation of Trace element-substituted Maghemite to Hematite. Clays Clay Miner. 36, 31–38 (1988)

    Article  ADS  CAS  Google Scholar 

  18. Zakharova, I.N., Shipilin, M.A., Alekseev, V.P., Shipilin, A.M.: Mössbauer study of maghemite nanoparticles. Tech. Phys. Lett. 38, 55–58 (2012). https://doi.org/10.1134/S1063785012010294

    Article  ADS  CAS  Google Scholar 

  19. Shokrollahi, H.: A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 426, 74–81 (2017)

    Article  ADS  CAS  Google Scholar 

  20. Ahmed, S.I., Sanad, M.M.S.: Maghemite-based anode materials for Li-Ion batteries: The role of intentionally incorporated vacancies and cation distribution in electrochemical energy storage. J. Alloys Compd. 861 (2021). https://doi.org/10.1016/j.jallcom.2020.157962

  21. Halbreich, A., Roger, J., Pons, J.N., Geldwerth, D., Da Silva, M.F., Roudier, M.: Bacri, JC. Biomedical application of maghemite ferrofluid. (1998)

  22. Gehring, A.U., Fischer, H., Louvel, M., Kunze, K., Weidler, P.G.: High temperature stability of natural maghemite: A magnetic and spectroscopic study. Geophys. J. Int. 179, 1361–1371 (2009). https://doi.org/10.1111/j.1365-246X.2009.04348.x

    Article  ADS  CAS  Google Scholar 

  23. Nonaka, A.G., Batista, M.A., Inoue, T.T., Costa, A.C.S.: da Thermal transformation and characterization of synthetic al-substituted maghemites (γ-Fe2-xAlxO3). Rev Bras Cienc Solo 40:1–13. (2016).https://doi.org/10.1590/18069657rbcs20150314

  24. Deka, S., Joy, P.A.: Enhancement of the phase transformation temperature of γ-Fe 2O3 by Zn2 + doping. J. Mater. Chem. 17, 453–456 (2007).https://doi.org/10.1039/b616120k

    Article  CAS  Google Scholar 

  25. Bian, L., Li, H., Li, Y., Nie, L.-N., Dong, F., Dong, H., Song, M., Wang, L., Zhou, T., Zhang, A., Li, X., Xie, L.: Enhanced photovoltage response of Hematite-X-Ferrite interfaces (X = cr, Mn, Co, or Ni). Nanoscale Res. Lett. 12 (2017). https://doi.org/10.1186/s11671-017-1885-3

  26. Popov, N., Ristić, M., Bošković, M., Perović, M., Ristić, S., Stanković, D., Krehula, S.: Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles. J. Phys. Chem. Solids. 161 (2022). https://doi.org/10.1016/j.jpcs.2021.110372

  27. Schwertmann, U., Fitzpatrick, R.W., Taylor, R.M., Lewis, D.G.: Influence of aluminum on Iron Oxides Part II. Preparation and properties of Al-Substituted hematites. Clays Clay Miner. 27, 105–112 (1979). https://doi.org/10.1346/CCMN.1979.0270205

    Article  ADS  CAS  Google Scholar 

  28. Mei, Q., Zhang, F., Wang, N., Yang, Y., Wu, R., Wang, W.: TiO2/Fe2O3 heterostructures with enhanced photocatalytic reduction of Cr(Vi) under visible light irradiation. RSC Adv. 9, 22764–22771 (2019). https://doi.org/10.1039/c9ra03531a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rahman, H., Nakashima, S.: 57Fe Mössbauer spectroscopic study on the magnetic structure of niobium-doped hematite. Appl. Phys. A Mater. Sci. Process. 128, 1–8 (2022).https://doi.org/10.1007/s00339-022-05691-x

    Article  CAS  Google Scholar 

  30. Wan, B., Xiao, F., Zhang, Y., Zhao, Y., Wu, L., Zhang, J., Gou, H.: Theoretical study of structural characteristics, mechanical properties and electronic structure of metal (TM = V, Nb and Ta) silicides. J. Alloys Compd. 681, 412–420 (2016). https://doi.org/10.1016/j.jallcom.2016.04.253

    Article  CAS  Google Scholar 

  31. Lai, J., Shafi, K.V.P.M., Loos, K., Ulman, A., Lee, Y., Vogt, T., Estournés, C.: Doping γ-Fe2O3 nanoparticles with mn(III) suppresses the transition to the α-Fe2O3 structure. J. Am. Chem. Soc. 125, 11470–11471 (2003).https://doi.org/10.1021/ja035409d

    Article  CAS  PubMed  Google Scholar 

  32. De Grave, E., Bowen, L.H., Vochten, R., Vandenberghe, R.E.: The effect of crystallinity and Al substitution on the magnetic structure and morin transition in hematite. J. Magn. Magn. Mater. 72, 141–151 (1988). https://doi.org/10.1016/0304-8853(88)90182-5

    Article  ADS  Google Scholar 

  33. Maruyama, Y., Nagao, M., Watauchi, S., Tanaka, I.: Synthesis and ionic conductivity of LixLa(1-x)/3Nb1-yTayO3solid solutions. J. Ceram. Soc. Jpn. 128, 761–765 (2020).https://doi.org/10.2109/jcersj2.20130

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Habibur Rahma develop the research, did experiment and wrote the manuscript. Satoru Nakashima evaluate and reviewed the result and the manuscript.

Corresponding author

Correspondence to Satoru Nakashima.

Ethics declarations

Ethical approval

We declare that the research presented in this manuscript has been conducted in accordance with the highest ethical standards and in compliance with the guidelines and regulations set forth by Hiroshima University, the responsible authority for ethical approval in our institution.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, H., Nakashima, S. 57Fe Mössbauer spectroscopic study on the magnetic properties of tantalum-doped maghemite and hematite. Hyperfine Interact 245, 6 (2024). https://doi.org/10.1007/s10751-024-01841-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01841-0

Keywords

Navigation