Skip to main content
Log in

Towards high precision mass measurements of Highly Charged Ions using the Phase-Imaging Ion-Cyclotron-Resonance technique at TITAN

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

High-precision mass measurements of short-lived ions have been traditionally performed using the Time-of-Flight Ion-Cyclotron-Resonance technique (ToF-ICR) with Singly Charged Ions (SCI) in Penning traps. In order to reach higher precision, TITAN is currently using the ToF-ICR technique with Highly Charged Ions (HCI) [1], taking advantage of the fact that the uncertainty of the mass is proportional to the factor 1/q, where q is the charge state of the ion. Meanwhile, a different technique, the so-called Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR), which has been applied in other facilities with SCI, has been proven to offer a gain in resolving power and precision compared to the ToF-ICR technique [2,3,4]. In an effort to reach new levels of precision in the mass measurements of short-lived species at TITAN, we investigated the scenario of performing mass measurements of HCI using the PI-ICR technique. Simulations showed that as the charge state of the ions increases, the image of the ion motion in the trap appears more and more magnified on the detector. This results in an increase in the resolution of the mass measurement up to an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ettenauer, S., Simon, M.C., Gallant, A.T., Brunner, T., Chowdhury, U., Simon, V.V., Brodeur, M., Chaudhuri, A., Mané, E., Andreoiu, C., Audi, G., López-Urrutia, J.R.C., Delheij, P., Gwinner, G., Lapierre, A., Lunney, D., Pearson, M.R., Ringle, R., Ullrich, J., Dilling, J.: First use of high charge states for mass measurements of short-lived nuclides in a Penning Trap. Phys. Rev. Lett. 107, 272501 (2011). https://doi.org/10.1103/PhysRevLett.107.272501

    Article  Google Scholar 

  2. Eliseev, S., Blaum, K., Block, M., Droese, C., Goncharov, M., Minaya Ramirez, E., Nesterenko, D.A., Novikov, Y.N., Schweikhard, L.: Phase-Imaging Ion-Cyclotron-Resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110, 082501 (2013). https://doi.org/10.1103/PhysRevLett.110.082501. http://link.aps.org/doi/10.1103/PhysRevLett.110.082501

    Article  ADS  Google Scholar 

  3. Nesterenko, D., Eronen, T., Kankainen, A., Canete, L., Jokinen, A., Moore, I., Penttilä, H., Rinta-Antila, S., de Roubin, A., Vilen, M.: Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning Trap mass spectrometer. Eur. Phys. J. A 54, 154 (2018). https://doi.org/10.1140/epja/i2018-12589-y

    Article  ADS  Google Scholar 

  4. Orford, R., Clark, J.A., Nystrom, A., Savard, G., Aprahamian, A., Brodeur, M., Buchinger, F., Burdette, D., Burkey, M.T., Hirsh, T.Y., Kelly, J., Lascar, D., Ling-Ying, L., Morgan, G.E., Sharma, K.S., Siegl, K.: Phase-Imaging mass measurements with the canadian Penning Trap mass Spectrometer, https://doi.org/10.7566/JPSCP.14.011102. http://journals.jps.jp/doi/abs/10.7566/JPSCP.14.011102

  5. Dilling, J., Blaum, K., Brodeur, M., Eliseev, S.: Penning-Trap mass measurements in atomic and nuclear physics. Annu. Rev. Nucl. Part. Sci. 68(1), 45 (2018). https://doi.org/10.1146/annurev-nucl-102711-094939

    Article  ADS  Google Scholar 

  6. König, M., Bollen, G., Kluge, H.J., Otto, T., Szerypo, J.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. International Journal of Mass Spectrometry and Ion Processes 142(1), 95 (1995). https://doi.org/10.1016/0168-1176(95)04146-C. http://www.sciencedirect.com/science/article/pii/016811769504146C

    Article  ADS  Google Scholar 

  7. Gräff, G., Kalinowsky, H., Traut, J.: Quadrupole excitation of stored ion motion at the true cyclotron frequency. J. Z Physik A 297, 35 (1980). https://doi.org/10.1007/BF01414243

    Article  ADS  Google Scholar 

  8. Kwiatkowski, A., Macdonald, T., Andreoiu, C., Bale, J., Brunner, T., Chaudhuri, A., Chowdhury, U., Ettenauer, S., Gallant, A., Grossheim, A., Lennarz, A., Mané, E., Pearson, M., Schultz, B., Simon, M., Simon, V., Dilling, J.: Precision mass measurements at TITAN with radioactive ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 317, 517 (2013 ). https://doi.org/10.1016/j.nimb.2013.05.087. http://www.sciencedirect.com/science/article/pii/S0168583X13007064. XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, December 2–7, 2012 at Matsue, Japan

    Article  Google Scholar 

  9. Lapierre, A., Brodeur, M., Brunner, T., Ettenauer, S., Gallant, A., Simon, V., Good, M., Froese, M., López-Urrutia, J.C., Delheij, P., Epp, S., Ringle, R., Schwarz, S., Ullrich, J., Dilling, J.: The TITAN EBIT charge breeder for mass measurements on highly charged short-lived isotopesFirst online operation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers Detectors and Associcated Equipment 624(1), 54 (2010). https://doi.org/10.1016/j.nima.2010.09.030. http://www.sciencedirect.com/science/article/pii/S0168900210020231

    Article  ADS  Google Scholar 

  10. Dilling, J., Bricault, P., Smith, M., Kluge, H.J.: The proposed TITAN facility at ISAC for very precise mass measurements on highly charged short-lived isotopes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 204, 492 (2003). https://doi.org/10.1016/S0168-583X(02)02118-3. http://www.sciencedirect.com/science/article/pii/S0168583X02021183. 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications

    Article  Google Scholar 

  11. Brunner, T., Smith, M., Brodeur, M., Ettenauer, S., Gallant, A., Simon, V., Chaudhuri, A., Lapierre, A., Mané, E., Ringle, R., Simon, M., Vaz, J., Delheij, P., Good, M., Pearson, M., Dilling, J.: TITAN’s digital RFQ ion beam cooler and buncher, operation and performance, vol. 676. http://www.sciencedirect.com/science/article/pii/S0168900212001398 (2012)

  12. Jesch, C., Dickel, T., Plaß, W, Short, D., Andres, S.S., Dilling, J., Geissel, H., Greiner, F., Lang, J., Leach, K., Lippert, W., Scheidenberger, C., Yavor, M.: The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF. Hyperfine Interact 235, 97 (2015). https://doi.org/10.1007/s10751-015-1184-2

    Article  ADS  Google Scholar 

  13. Brodeur, M., Ryjkov, V., Brunner, T., Ettenauer, S., Gallant, A., Simon, V., Smith, M., Lapierre, A., Ringle, R., Delheij, P., Good, M., Lunney, D., Dilling, J.: Verifying the accuracy of the TITAN Penning-trap mass spectrometer. International journal of mass spectrometry 310, 20 (2012). https://doi.org/10.1016/j.ijms.2011.11.002. http://www.sciencedirect.com/science/article/pii/S1387380611004568

    Article  ADS  Google Scholar 

  14. Ringle, R., Bollen, G., Prinke, A., Savory, J., Schury, P., Schwarz, S., Sun, T.: A Lorentz steerer for ion injection into a Penning trap. International Journal of Mass Spectrometry 263(1), 38 (2007). https://doi.org/10.1016/j.ijms.2006.12.008. http://www.sciencedirect.com/science/article/pii/S1387380606005781

    Article  ADS  Google Scholar 

  15. Smith, M., Brodeur, M., Brunner, T., Ettenauer, S., Lapierre, A., Ringle, R., Ryjkov, V.L., Ames, F., Bricault, P., Drake, G.W.F., Delheij, P., Lunney, D., Sarazin, F., Dilling, J.: First Penning-Trap Mass Measurement of the Exotic Halo Nucleus 11Li. Phys. Rev. Lett. 101, 202501 (2008). https://doi.org/10.1103/PhysRevLett.101.202501. http://link.aps.org/doi/10.1103/PhysRevLett.101.202501

    Article  ADS  Google Scholar 

  16. Malbrunot-Ettenauer, S., Brunner, T., Chowdhury, U., Gallant, A.T., Simon, V.V., Brodeur, M., Chaudhuri, A., Mané, E., Simon, M. C., Andreoiu, C., Audi, G., Crespo López-Urrutia, J. R., Delheij, P., Gwinner, G., Lapierre, A., Lunney, D., Pearson, M.R., Ringle, R., Ullrich, J., Dilling, J.: Penning trap mass measurements utilizing highly charged ions as a path to benchmark isospin-symmetry breaking corrections in 74Rb. Phys. Rev. C 91, 045504 (2015). https://doi.org/10.1103/PhysRevC.91.045504. http://link.aps.org/doi/10.1103/PhysRevC.91.045504

    Article  ADS  Google Scholar 

  17. Lascar, D., Klawitter, R., Babcock, C., Leistenschneider, E., Stroberg, S.R., Barquest, B.R., Finlay, A., Foster, M., Gallant, A.T., Hunt, P., Kelly, J., Kootte, B., Lan, Y., Paul, S.F., Phan, M.L., Reiter, M.P., Schultz, B., Short, D., Simonis, J., Andreoiu, C., Brodeur, M., Dillmann, I., Gwinner, G., Holt, J.D., Kwiatkowski, A.A., Leach, K.G., Dilling, J.: Precision mass measurements of 125−− 127Cd isotopes and isomers approaching the N = 82 closed shell. Phys. Rev. C 96, 044323 (2017). https://doi.org/10.1103/PhysRevC.96.044323. http://link.aps.org/doi/10.1103/PhysRevC.96.044323

    Article  ADS  Google Scholar 

  18. Babcock, C., Klawitter, R., Leistenschneider, E., Lascar, D., Barquest, B.R., Finlay, A., Foster, M., Gallant, A.T., Hunt, P., Kootte, B., Lan, Y., Paul, S.F., Phan, M.L., Reiter, M.P., Schultz, B., Short, D., Andreoiu, C., Brodeur, M., Dillmann, I., Gwinner, G., Kwiatkowski, A.A., Leach, K.G., Dilling, J.: Mass measurements of neutron-rich indium isotopes toward the N = 82 shell closure. Phys. Rev. C 97, 024312 (2018). https://doi.org/10.1103/PhysRevC.97.024312. http://link.aps.org/doi/10.1103/PhysRevC.97.024312

    Article  ADS  Google Scholar 

  19. Leistenschneider, E., Kwiatkowski, A., Dilling, J.: Vacuum requirements for Penning trap mass spectrometry with highly charged ions. nuclear instruments and methods in physics research section b: beam interactions with materials and atoms, https://doi.org/10.1016/j.nimb.2019.03.047.http://www.sciencedirect.com/science/article/pii/S0168583X19301673 (2019)

  20. Leistenschneider, E.: Dawning of Nuclear Magicity in N = 32 Seen through Precision Mass Spectrometry. Ph.D. thesis, University of British Columbia. https://doi.org/10.14288/1.0383355http://open.library.ubc.ca/collections/ubctheses/24/items/1.0383355 (2019)

  21. Dahl, D.A.: simion for the personal computer in reflection. International Journal of Mass Spectrometry 200(1), 3 (2000). https://doi.org/10.1016/S1387-3806(00)00305-5. http://www.sciencedirect.com/science/article/pii/S1387380600003055. Volume 200: The state of the field as we move into a new millenium

    Article  ADS  Google Scholar 

  22. Chauveau, P.: simion’s Simplex optimizer applied to electrode’s potential and geometry. http://simion.com/docs/ganil-2015/paper_pierre_chauveau.pdf. Simion user meeting, GANIL, 11/06/2015

Download references

Acknowledgements

This work has been supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada through TRIUMF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Marina Lykiardopoulou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of PLATAN 2019, 1st International Conference, Merger of the Poznan Meeting on Lasers and Trapping Devices in Atomic Nuclei Research and the International Conference on Laser Probing, Mainz, Germany 19-24 May 2019

Edited by Krassimira Marinova, Michael Block, Klaus D.A. Wendt and Magdalena Kowalska

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lykiardopoulou, E.M., Izzo, C., Leistenschneider, E. et al. Towards high precision mass measurements of Highly Charged Ions using the Phase-Imaging Ion-Cyclotron-Resonance technique at TITAN. Hyperfine Interact 241, 37 (2020). https://doi.org/10.1007/s10751-020-1705-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-020-1705-5

Keywords

Navigation