Skip to main content
Log in

Mössbauer studies of interactions between titanium atoms dissolved in iron

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The room temperature 57Fe Mössbauer spectra for binary iron-based solid solutions Fe1 − x Ti x , with x in the range 0.010 ≤ x ≤ 0.045, were analysed in terms of binding energy E b between two Ti atoms in the Fe-Ti system. The extrapolated values of E b for x = 0 were used for computation of enthalpy of solution of titanium in iron. The results were compared with that resulting from the Miedema’s model of alloys as well as those derived from the heat of formation of the system, obtained with both calorimetric measurements and theoretical calculations. The comparison shows that our Mössbauer spectroscopy findings are in a quite good agreement with all the other results mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kostov, A., Friedrich, B., Živković, D.: Thermodynamic calculations in alloys Ti-Al, Ti-Fe, Al-Fe and Ti-Al-Fe. J. Min. Metall. 44B, 49 (2008)

    Article  Google Scholar 

  2. Gachon, J.C., Hertz, J.: Calphand: Comput. Coupling Phase Diagrams Thermochem. 7, 1 (1983)

    Article  ADS  Google Scholar 

  3. Dumitrescu, L.F.S., Hillert, M., Saunders, N.: Comparison of the Fe-Ti assessments. J. Phase Equilibria 19, 441 (1998)

    Article  Google Scholar 

  4. Watson, R.E., Weinert, W.: Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B 58, 5981 (1998)

    Article  ADS  Google Scholar 

  5. Inyoung, S., Byeong-Joo, L.: Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems. Scripta Materialia 59, 595 (2008)

    Article  Google Scholar 

  6. Chojcan, J.: Interaction between impurity atoms of 3d transition metals dissolved in iron. J. Alloys Compd. 264, 50 (1998)

    Article  Google Scholar 

  7. Chojcan, J.: A dilute-limit heat of solution of 3d transition metals in iron studied with 57Fe Mössbauer spectroscopy. Hyperfine Interact. 156/157, 523 (2004)

    Article  ADS  Google Scholar 

  8. Chojcan, J., Konieczny, R., Ostrasz, A., Idczak R.: A dilute-limit heat of solution of molybdenum in iron studied with 57Fe Mössbauer spectroscopy. Hyperfine Interact. 196, 377 (2010)

    Article  ADS  Google Scholar 

  9. Idczak, R., Konieczny, R., Chojcan, J.: Thermodynamic properties of Fe-Ni solid solutions studied by 57Fe Mössbauer spectroscopy. Phys. B 407, 235 (2012)

    Article  ADS  Google Scholar 

  10. Konieczny, R., Idczak, R., Elsner, J., Chojcan J.: An enthalpy of solution of platinum in iron studied by 57Fe Mössbauer spectroscopy. Hyperfine Interact. 206, 119 (2012)

    Article  ADS  Google Scholar 

  11. Konieczny, R., Idczak, R., Szarypo, W., Chojcan, J.: An enthalpy of solution of rhenium in iron studied by 57Fe Mössbauer spectroscopy. Hyperfine Interact. 206, 135 (2012)

    Article  ADS  Google Scholar 

  12. Idczak R., Konieczny R., Chojcan J.: An enthalpy of solution of chromium in iron studied with 57Fe Mössbauer spectroscopy. Phys. B 407, 2078 (2012)

    Article  ADS  Google Scholar 

  13. Idczak, R., Konieczny, R., Konieczna, Ż., Chojcan, J.: An enthalpy of solution of cobalt and nickel in iron studiem with 57Fe Mössbauer spectroscopy. Acta Phys. Polon. A 119, 37 (2011)

    Google Scholar 

  14. Vincze, I., Campbell, I.A.: Mössbauer measurements in iron based alloys with transition metals. J. Phys. F 3, 647 (1973)

    Article  ADS  Google Scholar 

  15. Królas, K.: Correlation between impurity binding energies and heat of formation of alloys. Phys. Lett. A 85, 107 (1981)

    Article  ADS  Google Scholar 

  16. Miedema, A.R.: Energy effects and charge transfer in metal physics, modeling in real space. Phys. B 182, 1 (1992)

    Article  ADS  Google Scholar 

  17. Bonny, G., Pasionot, R.C., Malerba, L., Caro, A., Olsson, P., Lavrentiev, M.Y.: Numerical predictions of thermodynamic properties of iron-chromium alloys using semi-empirical cohesive models: the state of the art. J. Nucl. Mater. 385, 268 (2009)

    Article  ADS  Google Scholar 

  18. Boom, R., De Boer, F.R., Niessen, A.K., Miedema, A.R.: Enthalpies of formation of liquid and solid binary alloys based on 3d metals. Phys. B 115, 285 (1983)

    Google Scholar 

  19. Dursun, I.H., Güvenç, Z.B., Kasap, E.: A simple analytical EAM model for bcc metals. Commun. Nonlinear Sci. Numer. Simul. 15, 1259 (2010)

    Article  ADS  Google Scholar 

  20. Lejaeghere, K., Cottenier, S., Claessens, S., Waroquier, M., Van Speybroeck, V.: Assessment of a low-cost protocol for an ab inito based prediction of the mixing enthalpy at elevated temperatures: the Fe-Mo system. Phys. Rev. B 83, 184201 (2011)

    Article  ADS  Google Scholar 

  21. Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K.: Selected values of thermodynamic properties of binary alloys. American Society for Metals. Metals Park, Ohio (1973)

    Google Scholar 

  22. Swartzendruber, L.J., Itkin, V.P., Alcock, C.B.: Phase diagrams of binary iron alloys. In: Okamoto, H. (ed.) Materials information society. Materials Park, Ohio (1993)

    Google Scholar 

  23. Cranshaw, T.E.: A Mössbauer study of 119Sn in alloys of iron with Si, Al, and Rh: interaction potentials and phase diagrams. J. Phys.: Condensed Matter 1, 829 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Konieczny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konieczny, R., Idczak, R. & Chojcan, J. Mössbauer studies of interactions between titanium atoms dissolved in iron. Hyperfine Interact 219, 121–127 (2013). https://doi.org/10.1007/s10751-012-0653-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-012-0653-0

Keywords

Navigation