Skip to main content

Advertisement

Log in

Resonant recombination at ion storage rings: a conceptual alternative for isotope shift and hyperfine studies

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Sharp resonant structures in the cross section of the atomic electron-ion collision process of dielectronic recombination are exploited to study isotope shifts and hyperfine interaction of heavy highly-charged ions. This novel approach provides a conceptual alternative to existing methods. In this contribution, we present a series of measurements, which we performed at the heavy ion storage ring ESR of the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. In a first experiment the stable isotopes A = 142 and A = 150 of three-electron neodymium ANd57 +  were studied. Isotope shifts of dielectronic resonances associated with 2s − 2p j (j = 1/2, 3/2) transitions were extracted from the measured data. The evaluation of the energy shift was performed within a full QED framework and yielded a change in the mean-square charge radius of \(^{142,150}\delta \langle r^2 \rangle = -1.36(1)(3)\) fm2. At GSI, in addition to the investigation of stable isotopes unstable species can be artificially synthesized and studied. Radioisotopes produced in-flight from fragmentation of a 238U primary beam were injected into the ESR and were subsequently separated by their mass-to-charge ratio. This enabled us to perform first DR experiments with the exotic nuclei 237U89 +  (Z = 92 )and 234Pa88 +  (Z = 91).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burgess, A.: Astrophys. J. 139, 776 (1964)

    Article  ADS  Google Scholar 

  2. Dittner, P.F., Datz, S., Miller, P.D., Moak, C.D., Stelson, P.H., et al.: Phys. Rev. Lett. 51, 31 (1983)

    Article  ADS  Google Scholar 

  3. Franzke, B.: Nucl. Instrum. Methods B 24/25, 18 (1987)

    Article  ADS  Google Scholar 

  4. Jaeschke, E., Krämer, Arnold, W., Bisoffi, G., Blum, M., et al.: In: Proc. European Particle Accelerator Conference, Rome, vol. 1, p. 365 (1988)

  5. Abrahamsson, K., Andler, G., Bagge, L., Beebe, E., Carlé, P., et al.: Nucl. Instrum. Methods B 79, 269 (1993)

    Article  ADS  Google Scholar 

  6. Marrs, R.E., Levine, M.A., Knapp, D.A., Henderson, J.R.: Phys. Rev. Lett. 60, 1715 (1988)

    Article  ADS  Google Scholar 

  7. Graham, B., Fritsch, W., Hahn, Y., Tanis, J. (eds.): Recombination of Atomic Ions, 365 p. Plenum, New York (1992)

    Google Scholar 

  8. Müller, A.: Adv. At. Mol. Opt. Phys. 55, 293 (2008)

    Article  Google Scholar 

  9. Nakamura, N., Kavanagh, A.P., Watanabe, H., Sakaue, H.A., Li, Y., et al.: Phys. Rev. Lett. 100, 073203 (2008)

    Article  ADS  Google Scholar 

  10. Watanabe, H., Tobiyama, H., Kavanagh, A.P., Li, Y.M., Nakamura, N., et al.: Phys. Rev., A 75 012702 (2007)

    Article  ADS  Google Scholar 

  11. González Martínez, A.J., Crespo López-Urrutia, J.R., Braun, J., Brenner, G., Bruhns, H., et al.: Phys. Rev. Lett. 94, 203201 (2005)

    Article  ADS  Google Scholar 

  12. González Martínez, A.J., Crespo López-Urrutia, J.R., Braun, J., Brenner, G., Bruhns, H., et al.: Phys. Rev., A 73, 052710 (2006)

    Article  ADS  Google Scholar 

  13. Spies, W., Müller, A., Linkemann, J., Frank, A., et al.: Phys. Rev. Lett. 69, 2768 (1992)

    Article  ADS  Google Scholar 

  14. Mannervik, S., DeWitt, D., Engström, L., Lidberg, J., Lindroth, E., et al.: Phys. Rev. Lett. 81, 313 (1998)

    Article  ADS  Google Scholar 

  15. Brandau, C., Kozhuharov, C., Müller, A., Schippers, S., Beckert, K., et al.: Radiat. Phys. Chem. 75, 1763 (2006)

    Article  ADS  Google Scholar 

  16. Fritzsche, S., Surzhykov, A., Stöhlker, Th.: Phys. Rev. Lett. 103, 113001 (2009)

    Article  ADS  Google Scholar 

  17. Knapp, D.A., Beiersdorfer, P., Chen, M.H., Scofield, J.H., Schneider, D.: Phys. Rev. Lett. 74, 54 (1995)

    Article  ADS  Google Scholar 

  18. Schippers, S., Kieslich, S., Müller, A., Gwinner, G., Schnell, M., et al.: Phys. Rev., A 65, 042723 (2002)

    Article  ADS  Google Scholar 

  19. Brandau, C., Kozhuharov, C., Müller, A., Shi, W., Schippers, S., et al.: Phys. Rev. Lett. 91, 073202 (2003)

    Article  ADS  Google Scholar 

  20. Schuch, R., Lindroth, E., Madzunkov, S., Fogle, M., Mohamed, T., et al.: Phys. Rev. Lett. 95, 183003 (2005)

    Article  ADS  Google Scholar 

  21. Lestinsky, M., Lindroth, E., Orlov, D.A., Schmidt, E.W., Schippers S., et al.: Phys. Rev. Lett. 100, 033001 (2008)

    Article  ADS  Google Scholar 

  22. Savin, D.W.: J. Phys. Conf. Ser. 88, 012071 (2007)

    Article  Google Scholar 

  23. Saghiri, A.A., Linkemann, J., Schmitt, M., Schwalm, D., Wolf, A., et al.: Phys. Rev., A 60, R3350 (1999)

    Article  ADS  Google Scholar 

  24. Schippers, S., Schmidt, E.W., Bernhardt, D., Yu, D., Müller, A., et al.: Phys. Rev. Lett. 98, 033001 (2007)

    Article  ADS  Google Scholar 

  25. Yerokhin, V.A., Artemyev, A.N., Shabaev, V.M.: Phys. Rev., A 75, 062501 (2007)

    Article  ADS  Google Scholar 

  26. Brandau, C., Kozhuharov, C., Harman, Z., Müller, A., Schippers, S., et al.: Phys. Rev. Lett. 100, 073201 (2008)

    Article  ADS  Google Scholar 

  27. Kozhedub, Y.S., Andreev, O.V., Shabaev, V.M., Tupitsyn, I.I., Brandau, C., et al.: Phys. Rev., A 77, 032501 (2008)

    Article  ADS  Google Scholar 

  28. Lindroth, E., Danared, H., Glans, P., Pesic, Z., Tokman, M., et al.: Phys. Rev. Lett. 86, 5027 (2001)

    Article  ADS  Google Scholar 

  29. Brandau, C., Bartsch, T., Hoffknecht, A., Knopp, H., Schippers, S., et al.: Phys. Rev. Lett. 89, 053201 (2002)

    Article  ADS  Google Scholar 

  30. Kilgus, G., Berger, J., Blatt, P., Grieser, M., Habs, D., et al.: Phys. Rev. Lett. 64, 737 (1990)

    Article  ADS  Google Scholar 

  31. Geissel, H., Armbruster, P., Behr, K.H., Brünle, A., Burkard, K., et al.: Nucl. Instrum. Methods B 70, 286 (1992)

    Article  ADS  Google Scholar 

  32. Hoffknecht, A., Brandau, C., Bartsch, T., Böhme, C., Knopp, H., et al.: Phys. Rev., A 63, 012702 (2000)

    Article  ADS  Google Scholar 

  33. Shi, W., Böhm, S., Böhme, C., Brandau, C., Hoffknecht, A., et al.: Europhys. J. D 15, 145 (2001)

    ADS  Google Scholar 

  34. Shi, W., Bartsch, T., Böhme, C., Brandau, C., Hoffknecht, A., et al.: Phys. Rev., A 66, 022718 (2002)

    Article  ADS  Google Scholar 

  35. Gwinner, G., Hoffknecht, A., Bartsch, T., Beutelspacher, M., Eklööw, N., et al.: Phys. Rev. Lett. 84, 4822 (2000)

    Article  ADS  Google Scholar 

  36. Savitzky, A., Golay, M.J.E.: Anal. Chem. 36, 1627 (1964)

    Article  ADS  Google Scholar 

  37. Nefiodov, A.V., Labzowsky, L.N., Plunien, G., Soff, G.: Phys. Lett., A 222, 227 (1996)

    Article  ADS  Google Scholar 

  38. Hoffmann, B., Baur, G., Speth. J.: Z. Phys. A 315, 579 (1984)

    Google Scholar 

  39. Hoffmann, B., Baur, G., Speth. J.: Z. Phys. A 320, 259 (1985)

    Article  ADS  Google Scholar 

  40. Plunien, G., Soff, G.: Phys. Rev., A 53, 4614 (1996)

    Article  ADS  Google Scholar 

  41. Bosch, F., Geissel, H., Litvinov, Y.A., Beckert, K., Franzke, B., et al.: Int. J. Mass Spectrom. 251, 212 (2006)

    Article  ADS  Google Scholar 

  42. Litvinov, Y.A., Geissel, H., Radon, T., Attallah, F., Audi, G., et al.: Nucl. Phys., A 756, 3 (2005)

    Article  ADS  Google Scholar 

  43. Scheidenberger, C., Beckert, K., Beller, P., Bosch, F., Brandau, C., et al.: Hyperfine Interact. 173, 61 (2006)

    Article  ADS  Google Scholar 

  44. Brandau, C., Kozhuharov, C., Müller, A., Bernhardt, D., Böhm, S., et al.: J. Phys. Conf. Ser. 194, 012023 (2009)

    Article  ADS  Google Scholar 

  45. Sprenger, F., Lestinsky, M., Orlov, D.A., Schwalm, D., Wolf, A.: Nucl. Instrum. Methods A 532, 298 (2004)

    Article  ADS  Google Scholar 

  46. Orlov, D.A., Lestinsky, M., Sprenger, F., Schwalm, D., Terekhov, A.S., Wolf, A.: In: AIP Conference Proceedings, vol. 821, p. 478 (2006)

  47. Gutbrod, H.H., Gross, K.-D., Henning, W.F., Metag, V. (eds.): An international accelerator facility for beams of ions and antiprotons, conceptual design report, GSI. http://www.gsi.de/gsi-future/cdr (2001)

  48. The SPARC Collaboration: Stored particles atomic physics research collaboration, SPARC, Letter of intent. http://www.gsi.de/sparc (2004)

  49. The SPARC Collaboration: SPARC technical proposal. http://www.gsi.de/sparc (2005a)

  50. The SPARC Collaboration: SPARC technical report. http://www.gsi.de/sparc (2005b)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Brandau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandau, C., Kozhuharov, C., Müller, A. et al. Resonant recombination at ion storage rings: a conceptual alternative for isotope shift and hyperfine studies. Hyperfine Interact 196, 115–127 (2010). https://doi.org/10.1007/s10751-009-0142-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-009-0142-2

Keywords

Navigation