Skip to main content
Log in

Mössbauer spectroscopic study of iron-doped zirconia synthesized by microwave route

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Zirconium oxide (zirconia) exists in three crystalline forms of monoclinic, tetragonal and cubic structures at atmospheric pressures. The cubic form of zirconia is well known for its mechanical, electrochemical and optical applications. Fe-doped cubic zirconia (high temperature phase) compositions are synthesized by microwave combustion method. Here, we present a Mössbauer investigation of Zr1 − x Fe x O2 composition within a range of Fe (0.03 < x < 0.09). 57Fe Mössbauer spectra were recorded at room temperature and at low temperature (77 K) for all samples. 3% Fe-doped ZrO2 shows doublet and the corresponding 6% and 9% Fe-doped ZrO2 samples show superimposed sextet and doublets. The isomer shift and quadrupole moment indicate, Iron to be in III oxidation state and to occupy different octahedral sites, associated with some amount of disorder. X-ray powder diffraction pattern of Fe-doped ZrO2 samples appear as very well crystalline. The Miller indices refer to the cubic fluorite-type ZrO2 structure. The magnetic behavior shows increase in moment and decrease in coercivity, with increase in Fe concentration. The M vs. H plots of the as-prepared Zr1-x Fe x O2 essentially show typical hysteresis loops, indicating room temperature ferromagnetism. Thus, the introduced microwave combustion route is an effective process to achieve multifunctional Fe-doped Zirconia with coexistent magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, N.H., Poirot, N., Sakal, J.: Evidence for magnetism due to oxygen vacancies in Fe-doped HfO2 thin films. Appl. Phys. Lett. 89, 042503 (2006)

    Article  ADS  Google Scholar 

  2. Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A.K., Nath, T.K., Das, A.K., Dasgupta, I., Das, G.P.: Ferromagnetism in Fe-doped ZnO nanocrystals: experiment and theory. Phys. Rev., B 75, 144404 (2007)

    Article  ADS  Google Scholar 

  3. Hong, N.H., Sakai, J., Poirot, N., Ruyter, A.: Laser ablated Ni-doped HfO2 thin films: room temperature ferromagnets. Appl. Phys. Lett. 86, 242505 (2005)

    Article  ADS  Google Scholar 

  4. Ramachandran Rao, M.S., Kundaliya, D.C., Ogale, S.B., Fu, L.F., Welz, S.J., Browning, N.D., Zaitsev, V., Varughese, B., Cardoso, C.A., Curtin, A., Dhar, S., Shinde, S.R., Venkatesan, T., Lofland, S.E., Schwarz, S.A.: Search for ferromagnetism in undoped and cobalt-doped HfO2 − δ . Appl. Phys. Lett. 88, 142505 (2006)

    Article  ADS  Google Scholar 

  5. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001)

    Article  ADS  Google Scholar 

  6. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature (London) 430, 630 (2004)

    Article  ADS  Google Scholar 

  7. Coey, J.M.D., Venkatesan, M., Stamenov, P., Fitzgerald, C.B., Dorneles, L.S.: Magnetism in hafnium dioxide. Phys. Rev., B 72, 024450 (2005)

    Article  ADS  Google Scholar 

  8. Hong, N.H., Sakai, J., Poirot, N., Brize, V.: Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev., B 73, 132404 (2006)

    Article  ADS  Google Scholar 

  9. Radavanovic, P.V., Gamelin, D.R.: High-temperature ferromagnetism in Ni2 + -Doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots. Phys. Rev. Lett. 91, 157202 (2003)

    Article  ADS  Google Scholar 

  10. Khare, N., Kappers, M.J., Wei, M., Blamire, M.G., MacManus-Driscoll, J.L.: Defect-induced ferromagnetism in Co-doped ZnO. Adv. Mater. 18, 1449 (2006)

    Article  Google Scholar 

  11. Hong, N.H., Sakai, J., Houng, N.T., Poirot, N., Ruyter, A.: Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys. Rev., B 72, 045336 (2005)

    Article  ADS  Google Scholar 

  12. Archer, T., Das, C., Pemmaraju, C.D., Sanvito, S.: Magnetic properties of ZrO2-diluted magnetic semiconductors. J. Magn. Magn. Mater. 316, e118 (2007)

    Article  ADS  Google Scholar 

  13. Manoharan, S.S., Swati, Prasanna, S.J., Rao, M.L., Sahu, R.K.: Microwave-assisted synthesis of fine particle oxides employing wet redox mixtures. J. Am. Ceram. Soc. 85, 2469 (2002)

    Article  Google Scholar 

  14. Manoharan, S.S., Patil, K.C.: Combustion synthesis of metal chromite powders. J. Am. Ceram. Soc. 75(4), 1012 (1992)

    Article  Google Scholar 

  15. Bhame, S.D., Joly, V.L.J., Joy, P.A.: Effect of disorder on the magnetic properties of LaMn0.5Fe0.5O3. Phys. Rev., B 72, 054426 (2005)

    Article  ADS  Google Scholar 

  16. Potzger, K., Zhou, S., Reuther, H., Mucklich, A., Eichhorn, F., Schell, N., Skorupa, W., Helm, M., Fassmender, J., Herrmannsdorfer, T., Papageorgiou, T.P.: Fe implanted ferromagnetic ZnO. Appl. Phys. Lett. 88, 052508 (2006)

    Article  ADS  Google Scholar 

  17. Fitzgerald, C.B., Venkatesan, M., Douvalis, A.P., Huber, S., Coey, J.M.D.: SnO2 doped with Mn, Fe or Co: room temperature dilute magnetic semiconductors. J. Appl. Phys. 95, 7390 (2004)

    Article  ADS  Google Scholar 

  18. Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev., B 74, 161306(R) (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sundar Manoharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, T.R., Manoharan, S.S., Kurian, S. et al. Mössbauer spectroscopic study of iron-doped zirconia synthesized by microwave route. Hyperfine Interact 188, 43–49 (2009). https://doi.org/10.1007/s10751-008-9885-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-008-9885-4

Keywords

Navigation