Skip to main content
Log in

Global patterns and predictors of primary freshwater crab richness across taxa and realms

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater ecosystems are among the most important in the world and provide essential functions and services to humans. In this study, we examine the roles of environmental and historical factors in explaining contemporary patterns of species richness. We investigated spatial patterns of species richness of freshwater crabs by compiling geographic distribution maps for 1271 species. We employed six environmental variables slightly correlated and non-collinear to test environmental hypotheses. At a global scale, we identified three regions characterized by particularly high species richness: in northern South America (Neotropical biogeographic realm), in the Western Ghats and Sri Lanka (Oriental), and southwestern China (Oriental). The best-fitting model that explained global richness variation included environmental hypotheses: Temperature-Speciation, Resource Availability, Habitat Heterogeneity and Anthropic Impact. We also observed a historical influence on the pattern of richness, with distinct sets of environmental predictors of richness across taxa and biogeographic realms. Our models suggest that freshwater crab richness is associated with by varying processes occurring within specific environmental and historical scenarios. In general, we documented a concentration of freshwater crab richness in areas heavily impacted by human activities. These findings hold implications for the conservation of this taxonomic group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data used in the analyses are provided in Supplementary Material.

References

  • Albert, J. S., G. Destouni, S. M. Duke-Sylvester, A. E. Magurran, T. Oberdorff, R. E. Reis, K. O. Winemiller & W. J. Ripple, 2020. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50: 85–94. https://doi.org/10.1007/s13280-020-01318-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen, A. P., J. H. Brown & J. F. Gillooly, 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297: 1545–1548. https://doi.org/10.1126/science.1072380.

    Article  CAS  PubMed  Google Scholar 

  • Álvarez, F., J. C. Ojeda, E. Souza-Carvalho, J. L. Villalobos, C. Magalhães, I. S. Wehrtmann & F. L. Mantelatto, 2020. Revision of the higher taxonomy of neotropical freshwater crabs of the family Pseudothelphusidae, based on multigene and morphological analyses. Zoological Journal of the Linnean Society 193: 973–1001. https://doi.org/10.1093/zoolinnean/zlaa162.

    Article  Google Scholar 

  • Amatulli, G., S. Domisch, M. N. Tuanmu, B. Parmentier, A. Ranipeta, J. Malczyk & W. Jetz, 2018. Data Descriptor: a suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data 5: 1–15. https://doi.org/10.1038/sdata.2018.40.

    Article  Google Scholar 

  • Balian, E. V., H. Segers, C. Lévèque & K. Martens, 2008. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595: 627–637. https://doi.org/10.1007/s10750-007-9246-3.

    Article  Google Scholar 

  • Batuwita, S., S. Udugampala, M. De Silva, J. Diao & U. Edirisinghe, 2019. A review of amphibian fauna of Sri Lanka: distribution, recent taxonomic changes and conservation. Journal of Animal Diversity 1: 44–82. https://doi.org/10.29252/jad.2019.1.2.4.

    Article  Google Scholar 

  • Belmaker, J. & W. Jetz, 2015. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecology Letters 18: 563–571. https://doi.org/10.1111/ele.12438.

    Article  PubMed  Google Scholar 

  • Bossuyt, F., M. Meegaskumbura, N. Beenaerts, D. J. Gower, R. Pethiyagoda, K. Roelants, A. Mannaert, M. Wilkinson, M. M. Bahir, K. Manamendra-Arachchi, P. K. L. Ng, C. J. Schneider, O. V. Oommen & M. C. Milinkovitch, 2004. Local endemism within the Western Ghats-Sri Lanka Biodiversity Hotspot. Science 306: 479–481.

    Article  CAS  PubMed  Google Scholar 

  • Botejue, W. M. S. & J. Wattavidanage, 2012. Herpetofaunal diversity and distribution in Kalugala proposed forest reserve in Sri Lanka. Amphibian and Reptile Conservation 5: 65–80.

    Google Scholar 

  • Brehm, G., R. K. Colwell & J. Kluge, 2007. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography 16: 205–219. https://doi.org/10.1111/j.1466-8238.2006.00281.x.

    Article  Google Scholar 

  • Brown, J. H., 2014. Why are there so many species in the tropics? Journal of Biogeography 41: 8–22. https://doi.org/10.1111/jbi.12228.

    Article  PubMed  Google Scholar 

  • Buckley, L. B. & W. Jetz, 2007. Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society b: Biological Sciences 274: 1167–1173. https://doi.org/10.1098/rspb.2006.0436.

    Article  PubMed Central  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33: 261–304.

    Article  Google Scholar 

  • Burnham, K. P., D. R. Anderson & K. P. Huyvaert, 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65: 23–35. https://doi.org/10.1007/s00265-010-1029-6.

    Article  Google Scholar 

  • Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. MacE, D. Tilman, D. A. Wardle, A. P. Kinzig, G. C. Daily, M. Loreau, J. B. Grace, A. Larigauderie, D. S. Srivastava & S. Naeem, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67. https://doi.org/10.1038/nature11148.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain, S. A. & E. Szöcs, 2013. Taxize: taxonomic search and retrieval in R. F1000Research 2: 1–30. https://doi.org/10.12688/f1000research.2-191.v2.

    Article  CAS  Google Scholar 

  • Chaplin, G., 2005. Physical geography of the gaoligong shan area of Southwest China in relation tob. Proceedings of the California Academy of Sciences 56: 527–556.

    Google Scholar 

  • Chun, Y., D. A. Griffith, M. Lee & P. Sinha, 2016. Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. Journal of Geographical Systems 18: 67–85. https://doi.org/10.1007/s10109-015-0225-3.

    Article  Google Scholar 

  • Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A. M. Soulsby & M. Böhm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51. https://doi.org/10.1111/geb.12096.

    Article  PubMed  Google Scholar 

  • Crandall, K. A. & J. E. Buhay, 2008. Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae––Decapoda) in freshwater. Hydrobiologia 595: 295–301. https://doi.org/10.1007/s10750-007-9120-3.

    Article  Google Scholar 

  • Cumberlidge, N., 2016. Global Diversity and Conservation of Freshwater Crabs (Crustacea: Decapoda: Brachyura). In Kawai, T. & N. Cumberlidge (eds), A Global Overview of the Conservation of Freshwater Decapod Crustaceans Springer, Cham: 1–22.

    Google Scholar 

  • Cumberlidge, N. & S. R. Daniels, 2018. A new species of Potamonautes from São Tomé Island, Central Africa, with redescriptions of P. margaritarius (A. Milne-Edwards, 1869) from São Tomé and P. principe Cumberlidge, Clark, and Baillie, 2002, from Príncipe (Decapoda: Potamonautidae). Contributions to Zoology 87: 287–303.

    Article  Google Scholar 

  • Cumberlidge, N. & S. R. Daniels, 2022. A new multilocus phylogeny reveals overlooked diversity in African freshwater crabs (Brachyura: Potamoidea): a major revision with new higher taxa and genera. Zoological Journal of the Linnean Society 194: 1268–1311. https://doi.org/10.1093/zoolinnean/zlab082.

    Article  Google Scholar 

  • Cumberlidge, N. & P. K. L. Ng, 2009. Systematics, Evolution, and Biogeography of Freshwater Crabs. In Martin, J. W., K. A. Crandall & D. L. Felder (eds), Decapod Crustacean Phylogenetics CRC Press, Baton Rouge: 491–508.

    Chapter  Google Scholar 

  • Cumberlidge, N., F. Alvarez & J. L. Villalobos, 2014. Results of the global conservation assessment of the freshwater crabs (Brachyura, Pseudothelphusidae and Trichodactylidae): the Neotropical region, with an update on diversity. ZooKeys 457: 133–157. https://doi.org/10.3897/zookeys.457.6598.

    Article  Google Scholar 

  • Cumberlidge, N., P. K. L. Ng, D. C. J. Yeo, C. Magalhães, M. R. Campos, F. Alvarez, T. Naruse, S. R. Daniels, L. J. Esser, F. Y. K. Attipoe, F. L. Clotilde-Ba, W. Darwall, A. McIvor, J. E. M. Baillie, B. Collen & M. Ram, 2009. Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges. Biological and Conservation 142: 1665–1673. https://doi.org/10.1016/j.biocon.2009.02.038.

    Article  Google Scholar 

  • Cumberlidge, N., P. K. L. Ng, D. C. J. Yeo, T. Naruse, K. S. Meyer & L. J. Esser, 2011. Diversity, endemism and conservation of the freshwater crabs of China (Brachyura: Potamidae and Gecarcinucidae). Integrative Zoology 6: 45–55. https://doi.org/10.1111/j.1749-4877.2010.00228.x.

    Article  PubMed  Google Scholar 

  • Daniels, S. R. & S. Klaus, 2018. Divergent evolutionary origins and biogeographic histories of two freshwater crabs (Brachyura: Potamonautes) on the West African conveyer belt islands of São Tomé and Príncipe. Molecular Phylogenetics and Evolution 127: 119–128.

    Article  PubMed  Google Scholar 

  • Daniels, S. R., N. Cumberlidge, M. Pérez-Losada, S. A. E. Marijnissen & K. A. Crandall, 2006. Evolution of Afrotropical freshwater crab lineages obscured by morphological convergence. Molecular Phylogenetics and Evolution 40: 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Daniels, S. R., E. E. Phiri, S. Klauss, C. Albrecht & N. Cumberlidge, 2015. Multilocus phylogeny of the Afrotropical freshwater crab fauna reveals historical drainage connectivity and transoceanic dispersal since the Eocene. Systematic Biology 64(4): 549–567.

    Article  CAS  PubMed  Google Scholar 

  • Dantas, A. & C. R. Fonseca, 2023. Global biogeographical patterns of ants and their abiotic determinants. Perspectives in Ecology and Conservation 21: 237–246.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F. & L. M. Bini, 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecology and Biogeography 14: 177–185. https://doi.org/10.1111/j.1466-822X.2005.00147.x.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., T. F. L. V. B. Rangel & B. A. Hawkins, 2004. A test of multiple hypotheses for the species richness gradient of South American owls. Oecologia 140: 633–638. https://doi.org/10.1007/s00442-004-1577-4.

    Article  PubMed  Google Scholar 

  • Dudgeon, D., 2012. Threats to Freshwater Biodiversity Globally and in the Indo-Burma Biodiversity Hotspot. In Allen, D. J., K. G. Smith & W. R. T. Darwall (eds), The Status and Distribution of Freshwater Biodiversity in Indo-Burma International Union for the Conservation of Nature – IUCN, Cambridge: 1–28.

    Google Scholar 

  • Dudgeon, D., 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29: R960–R967. https://doi.org/10.1016/j.cub.2019.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81: 163–182. https://doi.org/10.1017/S1464793105006950.

    Article  PubMed  Google Scholar 

  • Esser, L. J. & N. Cumberlidge, 2011. Evidence that salt water may not be a barrier to the dispersal of Asian freshwater crabs (Decapoda: Brachyura: Gecarcinucidae and Potamidae). The Raffles Bulletin of Zoology 59(2): 259–268.

    Google Scholar 

  • Faghihinia, M., Y. Xu, D. Liu & N. Wu, 2021. Freshwater biodiversity at different habitats: research hotspots with persistent and emerging themes. Ecological Indicators 129: 1–7. https://doi.org/10.1016/j.ecolind.2021.107926.

    Article  Google Scholar 

  • Fetzner, J. W. & K. A. Crandall, 2003. Linear habitats and the nested clade analysis: an empirical evaluation of geographic versus river distances using an Ozark crayfish (Decapoda: Cambaridae). Evolution 57(9): 2101–2118.

    CAS  PubMed  Google Scholar 

  • García, V. J., C. O. Márquez, T. M. Isenhart, M. Rodríguez, S. D. Crespo & A. G. Cifuentes, 2019. Evaluating the conservation state of the páramo ecosystem: an object-based image analysis and CART algorithm approach for central Ecuador. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02701.

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Rodríguez, A., P. A. Martínez, B. F. Oliveira, J. A. Velasco, R. A. Pyron & G. C. Costa, 2021. Amphibian speciation rates support a general role of mountains as biodiversity pumps. American Naturalist 198: 68–79. https://doi.org/10.1086/715500.

    Article  Google Scholar 

  • Gherardi, F. & F. Micheli, 1989. Relative growth and population structure of the freshwater crab, Potamon potamios palestinensis, in the Dead Sea area (Israel). Israel Journal of Zoology 36(3–4): 133–145.

    Google Scholar 

  • Gouveia, S. F., F. Villalobos, R. Dobrovolski, R. Beltrão-Mendes & S. F. Ferrari, 2014. Forest structure drives global diversity of primates. Journal of Animal Ecology 83: 1523–1530. https://doi.org/10.1111/1365-2656.12241.

    Article  PubMed  Google Scholar 

  • Hawkins, B. A. & E. E. Porter, 2003. Relative influences of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecology and Biogeography 12: 475–481. https://doi.org/10.1046/j.1466-822X.2003.00060.x.

    Article  Google Scholar 

  • Hawkins, B. A., R. Field, H. V. Cornell, D. J. Currie, J. F. Guégan, D. M. Kaufman, J. T. Kerr, G. G. Mittelbach, T. Oberdorff, E. M. O’Brien, E. E. Porter & J. R. G. Turner, 2003a. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105–3117.

    Article  Google Scholar 

  • Hawkins, B. A., E. E. Porter & J. A. F. Diniz-Filho, 2003b. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84: 1608–1623. https://doi.org/10.1890/0012-658(2003)084[1608:PAHAPO]2.0.CO;2.

    Article  Google Scholar 

  • He, D., X. Sui, H. Sun, J. Tao, C. Ding, Y. Chen & Y. Chen, 2020. Diversity, pattern and ecological drivers of freshwater fish in China and adjacent areas. Reviews in Fish Biology and Fisheries. https://doi.org/10.1007/s11160-020-09600-4.

    Article  Google Scholar 

  • Hijmans, R. J., J. Van Etten, M. Sumner, J. Cheng, D. Baston, A. Bevan, R. Bivand, L. Busetto, M. Canty, B. Fasoli, D. Forrest, A. Ghosh, D. Golicher, J. Gray, J. A. Greenberg, P. Hiemstra, K. Hingee, I. M. A. Geosciences, C. Karney, M. Mattiuzzi, S. Mosher, B. Naimi, J. Nowosad, E. Pebesma, O. P. Limigueiro, E. B. Racine, B. Rowlingson, A. Shortridge, B. Venables & R. Wueest, 2021. Package ‘raster’.

  • Hu, W., J. Yao, Q. He & J. Chen, 2021. Elevation-dependent trends in precipitation observed over and around the Tibetan Plateau from 1971 to 2017. Water 13: 2848. https://doi.org/10.3390/w13202848.

    Article  Google Scholar 

  • Hurlbert, A. H. & J. C. Stegen, 2014. When should species richness be energy limited, and how would we know? Ecology Letters 17: 401–413.

    Article  PubMed  Google Scholar 

  • Hurtt, G. C. & S. W. Pacala, 1995. The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants. Journal of Theoretical Biology 176: 1–12.

    Article  Google Scholar 

  • Jacobson, A. P., J. Riggio, A. M. Tait & J. E. M. Baillie, 2019. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Scientific Reports 9: 1–13.

    CAS  Google Scholar 

  • Jetz, W. & C. Rahbek, 2002. Geographic range size and determinants of avian species richness. Science 297: 1548–1551.

    Article  CAS  PubMed  Google Scholar 

  • Jetz, W., C. Rahbek & R. K. Colwell, 2004. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters 7: 1180–1191.

    Article  Google Scholar 

  • Kerr, J. T. & L. Packer, 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385: 252–254.

    Article  CAS  Google Scholar 

  • Kerr, J. T., T. R. E. Southwood & J. Cihlar, 2001. Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. Proceedings of the National Academy of Sciences of the United States of America 98: 11365–11370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaus, S., K. Fernandez & D. C. J. Yeo, 2014. Phylogeny of the freshwater crabs of the Western Ghats (Brachyura, Gecarcinucidae). Zoologica Scripta 43(6): 651–660.

    Article  Google Scholar 

  • Komyakova, V., P. L. Munday & G. P. Jones, 2013. Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS ONE 8: 1–12.

    Article  Google Scholar 

  • Kozak, K. H. & J. J. Wiens, 2006. Does Niche Conservatism Promote Speciation? A Case Study in North American Salamanders. Evolution 60: 2604. https://doi.org/10.1554/06-334.1.

    Article  PubMed  Google Scholar 

  • Kozak, K. H. & J. J. Wiens, 2010. Niche conservatism drives elevational diversity patterns in appalachian salamanders. American Naturalist 176: 40–54.

    Article  PubMed  Google Scholar 

  • Leprieur, F., P. A. Tedesco, B. Hugueny, O. Beauchard, H. H. Dürr, S. Brosse & T. Oberdorff, 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters 14: 325–334.

    Article  PubMed  Google Scholar 

  • Lévêque, C., T. Oberdorff, D. Paugy, M. L. J. Stiassny & P. A. Tedesco, 2007. Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595: 545–567.

    Article  Google Scholar 

  • Li, X., B. Zhang, R. Ren, L. Li & S. P. Simonovic, 2022. Spatio-temporal heterogeneity of climate warming in the Chinese Tianshan mountainous region. Water 14: 199. https://doi.org/10.3390/w14020199.

    Article  CAS  Google Scholar 

  • Liu, J. J., K. S. Burgess & X. J. Ge, 2021. Species pool size and rainfall account for the relationship between biodiversity and biomass production in natural forests of China. Ecology and Evolution 12: e8838. https://doi.org/10.1002/ece3.8838.

    Article  Google Scholar 

  • Losos, J. B., 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11(10): 995–1003.

    Article  PubMed  Google Scholar 

  • Madriñán, S., A. J. Cortés & J. E. Richardson, 2013. Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics 4: 192. https://doi.org/10.3389/fgene.2013.00192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magalhães, C., M. R. Campos, P. A. Collins & F. L. Mantelatto, 2016. Diversity, Distribution and Conservation of Freshwater Crabs and Shrimps in South America. In Kawai, T. & N. Cumberlidge (eds), A Global Overview of the Conservation of Freshwater Decapod Crustaceans Springer, Cham: 303–322.

    Chapter  Google Scholar 

  • Martinez, P. A., S. F. Gouveia, L. M. Santos, F. H. A. Carvalho & M. Olalla-Tárraga, 2020. Ecological and historical legacies on global diversity gradients in marine elapid snakes. Austral Ecology 46: 3–7.

    Article  Google Scholar 

  • Marvel, K. & C. Bonfils, 2013. Identifying external influences on global precipitation. Proceedings of the National Academy of Sciences of the United States of America 110: 19301–19306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelbach, G. G., D. W. Schemske, H. V. Cornell, A. P. Allen, J. M. Brown, M. B. Bush, S. P. Harrison, A. H. Hurlbert, N. Knowlton, H. A. Lessios, C. M. McCain, A. R. McCune, L. A. McDade, M. A. McPeek, T. J. Near, T. D. Price, R. E. Ricklefs, K. Roy, D. F. Sax, D. Schluter, J. M. Sobel & M. Turelli, 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10: 315–331.

    Article  PubMed  Google Scholar 

  • Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson & L. Gough, 2001. What is the observed relationship between species richness and productivity? Ecology 82: 2381–2396.

    Article  Google Scholar 

  • Morinière, J., M. H. Van Dam, O. Hawlitschek, J. Bergsten, M. C. Michat, L. Hendrich, I. Ribera, E. F. A. Toussaint & M. Balke, 2016. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Scientific Reports 6: 1–12.

    Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Newbold, T., L. N. Hudson, S. L. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, D. J. Bennett, A. Choimes, B. Collen, J. Day, A. De Palma, S. Díaz, S. Echeverria-Londoño, M. J. Edgar, A. Feldman, M. Garon, M. L. K. Harrison, T. Alhusseini, D. J. Ingram, Y. Itescu, J. Kattge, V. Kemp, L. Kirkpatrick, M. Kleyer, D. L. P. Correia, C. D. Martin, S. Meiri, M. Novosolov, Y. Pan, H. R. P. Phillips, D. W. Purves, A. Robinson, J. Simpson, S. L. Tuck, E. Weiher, H. J. White, R. M. Ewers, G. M. MacE, J. P. W. Scharlemann & A. Purvis, 2015. Global effects of land use on local terrestrial biodiversity. Nature 520: 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Okano, T., H. Suzuki & T. Miura, 2000. Comparative biology of two Japanese freshwater crabs Geothelphusa exigua and G. dehaani (Decapoda, Brachyura, Potamidae). Journal of Crustacean Biology 20(2): 299–308.

    Article  Google Scholar 

  • Owen, C. L., H. Bracken-Grissom, D. Stern & K. A. Crandall, 2015. A synthetic phylogeny of freshwater crayfish: insights for conservation. Philosophical Transactions of the Royal Society A 370: 20140009. https://doi.org/10.1098/rstb.2014.0009.

    Article  Google Scholar 

  • Pati, S. K. & R. N. Pradhan, 2020. An overview of the freshwater crabs (Brachyura: Gecarcinucidae) of the Western Ghats. India. Oceanography & Fisheries 12(3): 1–9.

    Google Scholar 

  • Perrigo, A., C. Hoorn & A. Antonelli, 2020. Why mountains matter for biodiversity. Journal of Biogeography 47: 315–325.

    Article  Google Scholar 

  • Peters, M. K., A. Hemp, T. Appelhans, C. Behler, A. Classen, F. Detsch, A. Ensslin, S. W. Ferger, S. B. Frederiksen, F. Gebert, M. Haas, M. Helbig-Bonitz, C. Hemp, W. J. Kindeketa, E. Mwangomo, C. Ngereza, I. Otte, J. Röder, G. Rutten, D. Schellenberger Costa, J. Tardanico, G. Zancolli, J. Deckert, C. D. Eardley, R. S. Peters, M. O. Rödel, M. Schleuning, A. Ssymank, V. Kakengi, J. Zhang, K. Böhning-Gaese, R. Brandl, E. K. V. Kalko, M. Kleyer, T. Nauss, M. Tschapka, M. Fischer & I. Steffan-Dewenter, 2016. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications 7: 13736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, A. T., 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265–1267. https://doi.org/10.1126/science.

    Article  CAS  PubMed  Google Scholar 

  • Pontarp, M., L. Bunnefeld, J. S. Cabral, R. S. Etienne, S. A. Fritz, R. Gillespie, C. H. Graham, O. Hagen, F. Hartig, S. Huang, R. Jansson, O. Maliet, T. Münkemüller, L. Pellissier, T. F. Rangel, D. Storch, T. Wiegand & A. H. Hurlbert, 2019. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends in Ecology and Evolution 34: 211–223.

    Article  PubMed  Google Scholar 

  • Rahbek, C. & G. R. Graves, 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences of the United States of America 98: 4534–4539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajesh, L., S. Raj, S. K. Pati & A. B. Kumar, 2017. The freshwater crabs (Decapoda: Brachyura) of Kerala, Índia. Journal of Aquatic Biology & Fisheries 5: 132–153.

    Google Scholar 

  • Rangel, T. F. L. V. B., J. A. F. Diniz-Filho & R. K. Colwell, 2007. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. American Naturalist 170: 602–616. https://doi.org/10.1086/521315.

    Article  PubMed  Google Scholar 

  • Rios, D. P., V. E. S. Damasceno, D. F. R. Alves, W. M. S. Souto & B. G. N. Pralon, 2022. Seasonal variation in population structure and sexual maturity of Sylviocarcinus pictus (Decapoda: Trichodactylidae) in a Neotropical intermittent river. International Journal Limnology 58: 5. https://doi.org/10.1051/limn/2022007.

    Article  Google Scholar 

  • Rodríguez, G. & C. Magalhães, 2005. Recent advances in the biology of the Neotropical freshwater crab family Pseudothelphusidae (Crustacea, Decapoda, Brachyura). Revista Brasileira de Zoologia 22(2): 354–365.

    Article  Google Scholar 

  • Rohde, K., 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514–527.

    Article  Google Scholar 

  • Rohling, E. J., M. Fenton, F. J. Jorissen, P. Bertrand, G. Ganssen & J. P. Caulet, 1998. Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394: 162–165. https://doi.org/10.1038/28134.

    Article  CAS  Google Scholar 

  • Romdal, T. S. & J. A. Grytnes, 2007. An indirect area effect on elevational species richness patterns. Ecography 30: 440–448.

    Article  Google Scholar 

  • Sanderson, E. W., M. Jaiteh, M. A. Levy, K. H. Redford, A. V. Wannebo & G. Woolmer, 2002. The Human Footprint and the Last of the Wild. Bioscience 52: 891–904.

    Article  Google Scholar 

  • Schluter, D. & M. W. Pennell, 2017. Speciation gradients and the distribution of biodiversity. Nature 546: 48–55.

    Article  CAS  PubMed  Google Scholar 

  • Shih, H. T. & P. K. L. Ng, 2011. Diversity and biogeography of freshwater crabs (Crustacea: Brachyura: Potamidae, Gecarcinucidae) from East Asia. Systematics and Biodiversity 9(1): 1–16.

    Article  Google Scholar 

  • Smith, S. A., P. R. Stephens & J. J. Wiens, 2005. Replicate patterns of species richness, historical biogeography, and phylogeny in holarctic treefrogs. Evolution 59: 2433–2450.

    CAS  PubMed  Google Scholar 

  • Strayer, D. L., 2006. Challenges for freshwater invertebrate conservation. Journal of the North American Benthological Society 25: 271–287.

    Article  Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358.

    Article  Google Scholar 

  • Terribile, L. C., M. Á. Olalla-Tárraga, I. Morales-Castilla, M. Rueda, R. M. Vidanes, M. Á. Rodríguez & J. A. F. Diniz-Filho, 2009. Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia 159: 617–626.

    Article  PubMed  Google Scholar 

  • Tilman, D., 1994. Competition and biodiversity in spatially structured habitats, Princeton University Press, Princeton.

    Book  Google Scholar 

  • Tisseuil, C., J. F. Cornu, O. Beauchard, S. Brosse, W. Darwall, R. Holland, B. Hugueny, P. A. Tedesco & T. Oberdorff, 2013. Global diversity patterns and cross-taxa convergence in freshwater systems. Journal of Animal Ecology 82: 365–376.

    Article  PubMed  Google Scholar 

  • Toh, E. X. P., L. X. Gan & D. C. J. Yeo, 2022. A global overview of climate change impacts on freshwater decapods: substantial research gaps across taxa and biogeographic regions. Journal of Crustacean Biology 42(1): 1–13.

    Article  Google Scholar 

  • Toussaint, A., N. Charpin, S. Brosse & S. Villéger, 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports 6: 1–9.

    Article  Google Scholar 

  • Tsang, L. M., C. D. Schubart, S. T. Ahyong, J. C. Y. Lai, E. Y. C. Au, T. Chan, P. K. L. Ng & K. H. Chu, 2014. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of freshwater crabs. Molecular Biology and Evolution 31: 1173–1187.

    Article  CAS  PubMed  Google Scholar 

  • Turak, E., I. Harrison, D. Dudgeon, R. Abell, A. Bush, W. Darwall, C. M. Finlayson, S. Ferrier, J. Freyhof, V. Hermoso, D. Juffe-Bignoli, S. Linke, J. Nel, H. C. Patricio, J. Pittock, R. Raghavan, C. Revenga, J. P. Simaika & A. De Wever, 2017. Essential Biodiversity Variables for measuring change in global freshwater biodiversity. Biological Conservation 213: 272–279.

    Article  Google Scholar 

  • Vaz, G. G., 2000. Age of relict coral reef from the continental shelf off Karaikal, Bay of Bengal: evidence of Last Glacial Maximum. Current Science 79: 228–230.

    Google Scholar 

  • Vicente, J. R., R. F. Fernandes, C. F. Randin, O. Broennimann, J. Gonçalves, B. Marcos, I. Pôças, P. Alves, A. Guisan & J. P. Honrado, 2013. Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. Journal of Environmental Management 131: 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Villéger, S., S. Blanchet, O. Beauchard, T. Oberdorff & S. Brosse, 2011. Homogenization patterns of the world’s freshwater fish faunas. Proceedings of the National Academy of Sciences 108: 18003–18008.

    Article  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Weiskopf, S. R., M. A. Rubenstein, L. G. Crozier, S. Gaichas, R. Griffis, J. E. Halofsky, K. J. W. Hyde, T. L. Morelli, J. T. Morisette, R. C. Muñoz, A. J. Pershing, D. L. Peterson, R. Poudel, M. D. Staudinger, A. E. Sutton-Grier, L. Thompson, J. Vose, J. F. Weltzin & K. P. Whyte, 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment 733: 137782. https://doi.org/10.1016/j.scitotenv.2020.137782.

    Article  CAS  PubMed  Google Scholar 

  • Wiens, J. J. & M. J. Donoghue, 2004. Historical biogeography, ecology and species richness. Trends in Ecology and Evolution 19: 639–644.

    Article  PubMed  Google Scholar 

  • Wiens, J. J. & C. H. Graham, 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519–539.

    Article  Google Scholar 

  • Wiens, J. J., J. Sukumaran, R. A. Pyron & R. M. Brown, 2009. Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution 63: 1217–1231.

    Article  PubMed  Google Scholar 

  • Wijesundara, C. S., D. Warakagoda, U. Sirivardana, D. Chathuranga, T. Hettiarachchi, N. Perera, P. Rajkumar, S. Wanniarachchi & G. Weerakoon, 2017. Diversity and Conservation of Waterbirds in the Northern Avifaunal Region of Sri Lanka. Ceylon Journal of Science 46: 143–155. https://doi.org/10.4038/cjs.v46i5.7462.

    Article  Google Scholar 

  • Williams, B. A., O. Venter, J. R. Allan, S. C. Atkinson, J. A. Rehbein, M. Ward, M. Di Marco, H. S. Grantham, J. Ervin, S. J. Goetz, A. J. Hansen, P. Jantz, R. Pillay, S. Rodríguez-Buriticá, C. Supples, A. L. S. Virnig & J. E. M. Watson, 2020. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth 3: 371–382.

    Article  Google Scholar 

  • Willig, M. R. & S. J. Presley, 2018. Latitudinal gradients of biodiversity: theory and empirical patterns. Encyclopedia of the Anthropocene 13–19.

  • Wolfe, J. M., L. Ballou, J. Luque, V. M. Watson-Zink, S. T. Ahyong, J. Barido-Sottani, T. Y. Chan, K. H. Chu, K. A. Crandall, S. R. Daniels, D. L. Felder, H. Mancke, J. M. Martin, P. K. L. Ng, J. Ortega-Hernández, E. P. Theil, N. D. Pentcheff, R. Robles, B. P. Thoma, L. M. Tsang, R. Wetzer, A. M. Windsor & H. D. Bracken-Grissom, 2023. Convergent adaptation of true crabs (Decapoda, Brachyura) to a gradient of terrestrial environments. bioRxiv. https://doi.org/10.1101/2022.12.09.519815

  • Wright, D. H., 1983. Species-energy theory: an extension of species-area theory. Oikos 41: 496–506. https://doi.org/10.2307/3544109.

    Article  Google Scholar 

  • Wu, Y., R. K. Colwell, N. Han, R. Zhang, W. Wang, Q. Quan, C. Zhang, G. Song, Y. Qu & F. Lei, 2014. Understanding historical and current patterns of species richness of babblers along a 5000-m subtropical elevational gradient. Global Ecology and Biogeography 23: 1167–1176.

    Article  Google Scholar 

  • Yang, C., I. S. Wehrtmann, S. J. Wenger & A. T. Rugenski, 2020a. Neotropical freshwater crabs (Decapoda: Pseudothelphusidae) shred leaves. Nauplius 28: e2020020.

    Article  Google Scholar 

  • Yang, C., S. J. Wenger, A. T. Rugenski, I. S. Wehrtmann, S. Connelly & M. C. Freeman, 2020b. Freshwater crabs (Decapoda: Pseudothelphusidae) increase rates of leaf breakdown in a neotropical headwater stream. Freshwater Biology 65: 1673–1684.

    Article  CAS  Google Scholar 

  • Yang, L., R. L. Mayden & S. He, 2009. Population genetic structure and geographical differentiation of the Chinese catfish Hemibagrus macropterus (Siluriformes, Bagridae): evidence for altered drainage patterns. Molecular Phylogenetics and Evolution 51: 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., G. Ren, W. Li, Z. Huang, A. K. Lin, P. A. Garber, C. Ma, S. Yi, F. Momberg, Y. Gao, X. Wang, G. Li, A. Behie & W. Xiao, 2019. Identifying transboundary conservation priorities in a biodiversity hotspot of China and Myanmar: implications for data poor mountainous regions. Global Ecology and Conservation 20: e00732.

    Article  Google Scholar 

  • Yeo, D. C. J., P. K. L. Ng, N. Cumberlidge, C. Magalhães, S. R. Daniels & M. R. Campos, 2008. Global diversity of crabs (Crustacea: Decapoda: Brachyura) in freshwater. Hydrobiologia 595: 275–286. https://doi.org/10.1007/s10750-007-9023-3.

    Article  Google Scholar 

  • Zappa, G., P. Ceppi & T. G. Shepherd, 2020. Time-evolving sea-surface warming patterns modulate the climate change response of subtropical precipitation over land. Proceedings of the National Academy of Sciences of the United States of America 117: 4539–4545. https://doi.org/10.1073/pnas.1911015117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, Y. & D. C. J. Yeo, 2018. Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: a Southeast Asian case study. Biological Conservation 223: 58–67.

    Article  Google Scholar 

Download references

Acknowledgements

DFRA thanks CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Process no. 88887.341624/2019-00) for research scholarships (Programa Nacional de Pós-Doutorado/CAPES [PNPD]) linked to the Programa de Pós-Graduação em Ecologia, Conservação e Biodiversidade (University of Uberlândia) for financial support.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

DFRA was involved in the conceptualization, methodology, writing—original draft, writing—review and editing, investigation, and resources; PAM contributed to the conceptualization, methodology, writing—review and editing, and visualization; CM, SPBA and ACA assisted in writing—review and editing and visualization; TF was involved in the conceptualization, methodology, writing—review and editing, and visualization.

Corresponding author

Correspondence to Douglas Fernandes Rodrigues Alves.

Ethics declarations

Conflict of interest

Authors have no conflicting or competing interests.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 307 KB)

Supplementary file2 (DOCX 2716 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, D.F.R., Martinez, P.A., Magalhães, C. et al. Global patterns and predictors of primary freshwater crab richness across taxa and realms. Hydrobiologia (2024). https://doi.org/10.1007/s10750-024-05572-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10750-024-05572-9

Keywords

Navigation