Skip to main content
Log in

Effect of Mississippi River discharge plume on temporal and spatial variability of toxic cyanobacteria in an oligohaline estuary

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 18 September 2023

This article has been updated

Abstract

Globally, estuaries are undergoing profound hydrological alterations due to changes in climate and flood management coincident with the increasing frequency of harmful algal blooms (HABs). In coastal Louisiana, the introduction of nutrient-rich Mississippi River water into Lake Pontchartrain Estuary supports the proliferation of toxic cyanobacterial blooms (CyanoHABs). In 2019, over 28 km3 of Mississippi River water was diverted into the estuary (volume of 6 km3) to prevent flooding of downstream communities. This study characterized the impact of this river input containing 38,000 + metric tons of bioavailable N and 2,300 + metric tons of bioavailable P on monthly biological measures of the water column including biomass of pelagic cyanobacteria and associated toxin production. The estuary was freshened for months due to the river pulses, which initially limited phytoplankton response due to high total suspended solids. There was a cyanobacterial bloom once the river pulse stopped, related to increased water residence time, clarity, and nutrient availability. Particulate toxin concentration correlated to cyanobacterial biomass but was non-linear. Once bioavailable N decreased, nitrogen-fixing Dolichospermum spp. became dominant. This research on CyanoHABs in Lake Pontchartrain Estuary can help provide a basis to predict the response of estuaries to large nutrient-loading events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Change history

References

  • Anderson, D., P. Glibert & J. Burkholder, 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25: 704–726.

    Article  Google Scholar 

  • Argyrou, M. E., T. S. Bianchi & C. D. Lambert, 1997. Transport and fate of dissolved organic carbon in the Lake Pontchartrain Estuary, Louisiana, U.S.A. Biogeochemistry 38: 207–226. https://doi.org/10.1023/A:1005795432267.

    Article  CAS  Google Scholar 

  • Bargu, S., J. White, C. Li, J. Czubakowski & W. Fulweiler, 2011. Effects of freshwater input on nutrient loading, phytoplankton biomass, and cyanotoxin production in an oligohaline estuarine lake. Hydrobiologia 661: 377–389.

    Article  CAS  Google Scholar 

  • Bartoli, M., M. Zilius, M. Bresciani, D. Vaiciute, I. Vybernaite-Lubiene, J. Petkuviene, G. Giordani, D. Daunys, T. Ruginis, S. Benelli, C. Giardino, P. A. Bukaveckas, P. Zemlys, E. Griniene, Z. R. Gasiunaite, J. Lesutiene, R. Pilkaityte & A. Baziukas-Razinkovas, 2018. Drivers of cyanobacterial blooms in a hypertrophic lagoon. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2018.00434.

    Article  Google Scholar 

  • Bormans, M., Z. Amzil, E. Mineaud, L. Brient, V. Savar, E. Robert & E. Lance, 2019. Demonstrated transfer of cyanobacteria and cyanotoxins along a freshwater-marine continuum in France. Harmful Algae 87: 101639. https://doi.org/10.1016/j.hal.2019.101639.

    Article  CAS  PubMed  Google Scholar 

  • Boyer, G. L., 2008. Cyanobacterial toxins in New York and lower Great Lakes ecosystems. Advances in Experimental Medicine and Biology 619: 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Bukaveckas, P. A., J. Lesutiene, Z. R. Gasiunaite, L. Lozys, I. Olenina, R. Pilkaityte, Z. Putys, S. Tassone & J. D. Wood, 2017. Microcystin in aquatic food webs of the Baltic and Chesapeake Bay regions. Estuarine, Coastal and Shelf Science 191: 50–59.

    Article  Google Scholar 

  • Cangialosi, J.P., A.B. Hagen & R. Berg, 2019. PDF. Hurricane Barry. National Hurricane Center Tropical Cyclone Report.

  • Carmichael, W. W., 2001. Health effects of toxin-producing cyanobacteria: “the cyanohabs.” Human and Ecological Risk Assessment 7: 1393–1407.

    Article  Google Scholar 

  • Chia, M. A., J. G. Jankowiak, B. J. Kramer, J. A. Goleski, I. S. Huang, P. V. Zimba, M. do Carmo Bittencourt Oliveira & C. J. Gobler, 2018. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. Harmful Algae 74: 67–77. https://doi.org/10.1016/j.hal.2018.03.002.

    Article  CAS  PubMed  Google Scholar 

  • Cloern, J. E., 1999. The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquatic Ecology 33: 3–15. https://doi.org/10.1023/A:1009952125558.

    Article  Google Scholar 

  • D’Anglada, L. V., 2015. Editorial on the special issue “Harmful algal blooms (HABs) and public health: progress and current challenges.” Toxins 7: 4437–4441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott, J. A., I. D. Jones & S. J. Thackeray, 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559: 401–411.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency, 2021. Learn about cyanobacteria and cyanotoxins. EPA. Retrieved October 1, 2021, from https://www.epa.gov/cyanohabs/learn-about-cyanobacteria-and-cyanotoxins.

  • Ferrão-Filho, A. S. & B. Kozlowsky-Suzuki, 2011. Cyanotoxins: bioaccumulation and effects on aquatic animals. Marine Drugs 9: 2729–2772. https://doi.org/10.3390/md9122729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrao-Filho, A. S., N. A. Herrera & L. F. Echeverri, 2014. Microcystin accumulation in ~ cladocerans: first evidence of MC uptake from aqueous extracts of a natural bloom sample. Toxicon 87: 26e31. https://doi.org/10.1016/j.toxicon.2014.05.015.

    Article  CAS  Google Scholar 

  • Fernández, C., V. Estrada & E. R. Parodi, 2015. Factors triggering cyanobacteria dominance and succession during blooms in a hypereutrophic drinking water supply reservoir. Water, Air, & Soil Pollution 226: 73.

    Article  Google Scholar 

  • Garcia, A. C., S. Bargu, P. Dash, N. Rabalais, M. Sutor, W. Morrison & N. Walker, 2010. Evaluating the potential risk of microcystins to blue crab (Callinectes sapidus) fisheries and human health in a eutrophic estuary. Harmful Algae 9: 134–143.

    Article  CAS  Google Scholar 

  • Haywood, B. J., J. R. White & R. L. Cook, 2018. Investigation of an early season river flood pulse: carbon cycling in a subtropical estuary. Science of the Total Environment 635: 867–877. https://doi.org/10.1016/j.scitotenv.2018.03.379.

    Article  CAS  PubMed  Google Scholar 

  • Horst, G. P., O. Sarnelle, J. D. White, S. K. Hamilton, R. B. Kaul & J. D. Bressie, 2014. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Research 54: 188–198.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., C. Li, J. R. White, S. Bargu, B. Milan & S. Bentley, 2020. Numerical experiments on variation of freshwater plume and leakage effect from Mississippi River diversion in the Lake Pontchartrain Estuary. Journal of Geophysical Research. https://doi.org/10.1029/2019jc015282.

    Article  PubMed  Google Scholar 

  • Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Article  Google Scholar 

  • Iles, R. L., N. D. Walker, J. R. White & R. V. Rohli, 2021. Impacts of a major Mississippi River freshwater diversion and winds on suspended sediment plume kinematics in Lake Pontchartrain. Estuaries and Coasts 44: 704–721.

    Article  Google Scholar 

  • Jöhnk, K. D., J. Huisman, J. Sharples, B. Sommeijer, P. M. Visser & J. M. Stooms, 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 495–512.

    Article  Google Scholar 

  • Konopka, A. & T. D. Brock, 1978. Effect of temperature on blue-green algae (cyanobacteria) in Lake Mendota. Applied and Environmental Microbiology 36: 572–576. https://doi.org/10.1128/aem.36.4.572-576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosten, S., V. L. M. Huszar, E. Bécares, L. S. Costa, E. Van Donk, L. A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. Meester, B. Moss, T. Nõges, S. Romo & M. Scheffer, 2012. Warmer climate boosts cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.

    Article  Google Scholar 

  • Kozlowsky-Suzuki, B., A. E. Wilson & A. da Ferrão-Filho, 2012. Biomagnification or biodilution of microcystins in aquatic foodwebs? meta-analyses of laboratory and field studies. Harmful Algae 18: 47–55. https://doi.org/10.1016/j.hal.2012.04.002.

    Article  CAS  Google Scholar 

  • Kravchuk, E. S., E. A. Ivanova & M. I. Gladyshev, 2005. Seasonal dynamics of akinetes of Anabaena flos-aquae in bottom sediments and water column of small Siberian reservoir. Aquatic Ecology 40: 325–336.

    Article  Google Scholar 

  • Lehman, P. W., G. Boyer, M. Satchwell & S. Waller, 2008. The influence of environmental conditions on the seasonal variation of Microcystis cell density and microcystins concentration in San Francisco Estuary. Hydrobiologia 600: 187–204.

    Article  CAS  Google Scholar 

  • Li, C., N. Walker, A. Hou, I. Georgiou, H. Roberts, E. Laws, J. A. McCorquodale, E. Weeks, X. Li & J. Crochet, 2008. Circular plumes in Lake Pontchartrain Estuary under wind straining. Estuarine, Coastal and Shelf Science 80: 161–172.

    Article  Google Scholar 

  • Mize, S. V. & D. K. Demcheck, 2009. Water quality and phytoplankton communities in Lake Pontchartrain during and after the Bonnet Carré Spillway opening, April to October 2008, in Louisiana, USA. GeoMarine Letters 29: 431–440.

    CAS  Google Scholar 

  • Neilan, B. A., L. A. Pearson, J. Muenchhoff, M. C. Moffitt & E. Dittmann, 2013. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology 15: 1239–1253. https://doi.org/10.1111/j.1462-2920.2012.02729.

    Article  CAS  PubMed  Google Scholar 

  • NPR 2019. Toxic Algae Bloom Closes 25 Beaches On Mississippi’s Coast, Fed By Fresh Floodwaters. NPR.org https://www.npr.org/2019/07/09/739874122/toxic-algae-bloom-closes-25-beaches-on-mississippis-coast-fed-by-fresh-floodwate.

  • Paerl, H. W., 1988. Nuisance phytoplankton blooms in coastal, estuarine, and Inland Waters. Limnology and Oceanography 33(4): 823–843. https://doi.org/10.4319/lo.1988.33.4_part_2.0823.

    Article  CAS  Google Scholar 

  • Paerl, H. W., 2014. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4: 988–1012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W. & D. Justić, 2011. Primary Producers: Phytoplankton ecology and trophic dynamics in coastal waters. In Wolanski, E. & D. S. McLusky (eds), Treatise on Estuarine and Coastal Science 6 Academic Press, Waltham: 23–42.

    Chapter  Google Scholar 

  • Paerl, H. W. & V. J. Paul, 2012. Climate change: Links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363. https://doi.org/10.1016/j.watres.2011.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W., T. G. Otten & R. Kudela, 2018. Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environmental Science & Technology 52: 5519–5529. https://doi.org/10.1021/acs.est.7b05950.

    Article  CAS  Google Scholar 

  • Paerl, H. W., R. S. Fulton III., P. H. Moisander & J. Dyble, 2001. Harmful freshwater algal blooms with an emphasis on cyanobacteria. The Scientific World 1: 76–113.

    Article  CAS  Google Scholar 

  • Parra, S. M., V. Sanial, A. D. Boyette, M. K. Cambazoglu, I. M. Soto, A. T. Greer, L. M. Chiaverano & a. Hoover & M. Dinniman, 2020. Bonnet Carré Spillway freshwater transport and corresponding biochemical properties in the Mississippi Bight. Continental Shelf Research 199: 104114.

    Article  Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. A. Lali, 1984. Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press, Oxford:

    Google Scholar 

  • Peyronnin, N., R. Caffey, J. Cowan, D. Justic, A. Kolker, S. Laska, A. McCorquodale, E. Melancon, J. Nyman, R. Twilley, J. Visser, J. White & J. Wilkins, 2017. Optimizing sediment diversion operations: working group recommendations for integrating complex ecological and social landscape interactions. Water 9: 368. https://doi.org/10.3390/w9060368.

    Article  Google Scholar 

  • Pilkaityte, R. & A. Razinkovas, 2006. Factors controlling phytoplankton blooms in a temperate estuary: nutrient limitation and physical forcing. Hydrobiologia 555: 41–48.

    Article  CAS  Google Scholar 

  • Preece, E. P., B. C. Moore & F. J. Hardy, 2015. Transfer of microcystin from Freshwater Lakes to Puget Sound, WA and toxin accumulation in marine mussels (Mytilus Trossulus). Ecotoxicology and Environmental Safety 122: 98–105. https://doi.org/10.1016/j.ecoenv.2015.07.013.

    Article  CAS  PubMed  Google Scholar 

  • Preece, E. P., F. J. Hardy, B. C. Moore & M. Bryan, 2017. A review of microcystin detections in estuarine and marine waters: environmental implications and human health risk. Harmful Algae 61: 3145. https://doi.org/10.1016/j.hal.2016.11.006.

    Article  CAS  Google Scholar 

  • Quinlan, E. L. & E. J. Phlips, 2007. Phytoplankton assemblages across the marine to low-salinity transition zone in a blackwater dominated estuary. Journal of Plankton Research 29: 401–416. https://doi.org/10.1093/plankt/fbm024.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. & A. E. Walsby, 1975. Water blooms. Biological Reviews 50: 437–481.

    Article  CAS  Google Scholar 

  • Robarts, R. D. & T. Zohary, 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research 21: 391–399.

    Article  CAS  Google Scholar 

  • Ross, C., L. Santiago-Vázquez & V. Paul, 2006. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology 78: 66–73. https://doi.org/10.1016/j.aquatox.2006.02.007.

    Article  CAS  PubMed  Google Scholar 

  • Ross, C., B. C. Warhurst, A. Brown, C. Huff & J. D. Ochrietor, 2019. Mesohaline conditions represent the threshold for oxidative stress, cell death and toxin release in the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology 206: 203–211. https://doi.org/10.1016/j.aquatox.2018.11.019.

    Article  CAS  PubMed  Google Scholar 

  • Roy, E. D., 2013. A multi-scale investigation of nutrient dynamics in the Lake Pontchartrain Estuary and Basin. LSU Doctoral Dissertations. 2335.

  • Roy, E. D. & J. R. White, 2012. Nitrate flux into the sediments of a shallow oligohaline estuary during large flood pulses of Mississippi River water. Journal of Environmental Quality 41: 1549–1556. https://doi.org/10.2134/jeq2011.0420.

    Article  CAS  PubMed  Google Scholar 

  • Roy, E. D., J. R. White, E. A. S. Bargu & C. Li, 2013. Estuarine ecosystem response to three large-scale Mississippi River flood diversion events. Science of the Total Environment 458–460: 374–387. https://doi.org/10.1016/j.scitotenv.2013.04.046.

    Article  CAS  PubMed  Google Scholar 

  • Roy, E. D., E. A. Smith, S. Bargu & J. R. White, 2016. Will Mississippi River diversions designed for coastal restoration cause harmful algal blooms? Ecological Engineering 91: 350–364.

    Article  Google Scholar 

  • Roy, E. D., N. T. Nguyen & J. R. White, 2017. Changes in estuarine sediment phosphorus fractions during a large-scale Mississippi River diversion. Science of the Total Environment 609: 1248–1257. https://doi.org/10.1016/j.scitotenv.2017.07.224.

    Article  CAS  PubMed  Google Scholar 

  • Rozas, L. P., T. J. Minello, I. Munuera-Fernández, B. Fry & B. Wissel, 2005. Macrofaunal distributions and habitat change following winter–spring releases of freshwater into the Breton Sound estuary, Louisiana (USA). Estuarine Coastal and Shelf Science 65: 319–336.

    Article  Google Scholar 

  • Sapkota, Y., S. Bargu & J. R. White, 2023. Temporally-displaced Mississippi River spring flood pulse shows muted aquatic ecosystem response in estuarine waters: a climate change warning for coastal foodwebs. Science of the Total Environment 874: 162623.

    Article  CAS  PubMed  Google Scholar 

  • Sheldon, J. E. & M. Alber, 2006. The calculation of estuarine turnover times using freshwater fraction and tidal prism models: A critical evaluation. Estuaries and Coasts: J ERF 29: 133–146.

    Article  Google Scholar 

  • Solis, R. & G. Powell, 1999. Hydrography, mixing characteristics, and residence times of Gulf of Mexico estuaries. In Pennock, B. J. R., Thomas S., & R. Twilley (eds), Biogeochemistry of Gulf of Mexico Estuaries. Wiley, New York.

    Google Scholar 

  • Sotton, B., J. Guillard, O. Anneville, M. Marechal, O. Savichtcheva & I. Domaizon, 2014. Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination. Science of the Total Environment 466467: 152163. https://doi.org/10.1016/j.scitotenv.2013.07.020.

    Article  CAS  Google Scholar 

  • Thompson, P. A., H. M. Oh & G. Y. Rhee, 1994. Storage of phosphorus in nitrogen-fixing Anabaena flos-aquae (cyanophyceae). Journal of Phycology 30: 267–273.

    Article  CAS  Google Scholar 

  • Tonk, L., K. Bosch, P. M. Visser & J. Huisman, 2007. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecology 46: 117–123.

    Article  Google Scholar 

  • Turner, R. E. & N. Rabalais, 1994. Coastal eutrophication near the Mississippi River delta. Nature 368: 619–621.

    Article  Google Scholar 

  • Turner, R. E., Q. Dortch & N. Rabalais, 1999. Effects of the 1997 Bonnet Carre´ opening on nutrients and phytoplankton in Lake Pontchartrain. Report to the Lake Pontchartrain Basin Foundation, Metairie, LA: Lake Pontchartrain Basin Foundation, 117 pp.

  • Turner, R. E., Q. Dortch, D. Justic’ & E. M. Swenson, 2002. Nitrogen loading into an urban estuary: Lake Pontchartrain (Louisiana, USA). Hydrobiologia 487: 137–152.

    Article  CAS  Google Scholar 

  • Turner, R. E., Q. Dortch & N. Rabalais, 2004. Inorganic nitrogen transformations at high loading rates in an oligohaline estuary. Biogeochemistry 68: 411–422.

    Article  CAS  Google Scholar 

  • USACE, 2020. Retrieved December 08, 2020, from https://www.mvn.usace.army.mil/Missions/MississippiRiver-Flood-Control/Bonnet-Carre-Spillway-Overview/Historic-Operation-of-Bonnet-Carre/.

  • USEPA, 1993. USEPA (United States Environmental Protection Agency). Methods of chemical analysis of water and waste. USEPA 600/R-93/100 Environmental Monitoring Support Laboratory, Cincinnati.

  • Verspagen, J. M., J. Passarge, K. D. Jöhnk, P. M. Visser, L. Peperzak, P. Boers, H. Laanbroek & J. Huisman, 2006. Water management strategies against toxic Microcystis blooms in the Dutch delta. Ecological Applications 16: 313–327. https://doi.org/10.1890/04-1953.

    Article  PubMed  Google Scholar 

  • Walls, J. T., K. H. Wyatt, J. C. Doll, E. M. Rubenstein & A. R. Rober, 2018. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Science of the Total Environment 610–611: 786–795. https://doi.org/10.1016/j.scitotenv.2017.08.149.

    Article  CAS  PubMed  Google Scholar 

  • White, J. R., R. W. Fulweiler, C. Y. Li, S. Bargu, N. Walker, R. R. Twilley & S. Green, 2009. The Mississippi River flood of 2008 – effects of a large freshwater diversion on physical, chemical and biological characteristics of a shallow, estuarine lake. Environmental Science and Technology 43: 5599–5604.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Q., X. Su, A. D. Steinman, Y. Cai, Y. Zhao & L. Xie, 2016. Accumulation of microcystins in dominant Chironomid larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake. Lake Taihu Scientific Reports 6: 31097. https://doi.org/10.1038/srep31097.

    Article  CAS  PubMed  Google Scholar 

  • Ye, N. H., X. W. Zhang, Y. Z. Mao, C. W. Liang, D. Xu, J. Zou, Z. M. Zhuang & Q. Y. Wang, 2011. ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecological Research 26: 477–485.

    Article  Google Scholar 

  • Zhang, D., P. Xie, Y. Liu, J. Chen & Z. Wen, 2009. Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu. Ecotoxicology and Environmental Safety 72: 466–472. https://doi.org/10.1016/j.ecoenv.2008.05.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the editor and reviewers for taking the time to review our manuscript and providing constructive feedback to improve our manuscript. Support for this research was provided by LSU Discover (to Ms. Callie Snow) and Louisiana Sea Grant (AWD-001350, to Drs. John R. White and Sibel Bargu), We extend our thanks to Eddie Weeks for providing us with valuable support in the field as well as Jacob Cheng and James Anderson of the Wetland and Aquatic Biogeochemistry Laboratory for environmental and nutrient analyses. Monique Boudreaux, Lauren Lewellen, and Peter Mates are acknowledged for their significant support in the field and laboratory. The USGS and USACE are acknowledged for providing flow numbers and total discharge numbers for the openings of the Bonnet Carré Spillway.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Bargu.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Handling editor: Daniele Nizzoli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snow, C., Bargu, S., Hammond, C.N. et al. Effect of Mississippi River discharge plume on temporal and spatial variability of toxic cyanobacteria in an oligohaline estuary. Hydrobiologia 851, 87–103 (2024). https://doi.org/10.1007/s10750-023-05322-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05322-3

Keywords

Navigation