Skip to main content
Log in

What we know and do not know about the invasive Asian clam Corbicula fluminea

  • INVASIVE FRESHWATER MOLLUSCS
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Corbicula fluminea is a widespread and problematic invasive bivalve species in many freshwater ecosystems. Here, a systematic literature review was performed to synthesise what is presently known about C. fluminea in relation to its biology, ecology, and management. Of the total 1156 studies analysed, most were conducted in North America and Europe, with a primary focus on toxicology and ecology. In the native range, most studies assessed the role of C. fluminea in human nutrition and health. We have also identified a series of knowledge gaps that should be considered by future research. These include, for example, the need to better assess basic biological and ecological features (e.g. distribution, abundance, biomass, population structure, modes of reproduction, natural enemies) of C. fluminea, while the resolution of severe taxonomic problems that persist within the Corbicula species complex should be addressed with novel molecular tools. Further, better understanding of the mechanisms that underpin the impacts of C. fluminea in the invaded range is required. Given the high invasiveness of C. fluminea, novel methodologies and techniques to improve early detection, prediction of spread, and effective management for successful containment and eradication are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Aguirre-Martínez, G. V., C. André, F. Gagné & L. M. Martín-Díaz, 2018. The effects of human drugs in Corbicula fluminea. Assessment of neurotoxicity, inflammation, gametogenic activity, and energy status. Ecotoxicology and Environmental Safety 148: 652–663. https://doi.org/10.1016/j.ecoenv.2017.09.042.

    Article  CAS  PubMed  Google Scholar 

  • Aldridge, D. W., B. S. Payne & A. C. Miller, 1987. The effect of intermittent exposure to suspended solids and turbulence on three species of freshwater mussels. Environmental Pollution 45: 17–28. https://doi.org/10.1016/0269-7491(87)90013-3.

    Article  CAS  PubMed  Google Scholar 

  • Aldridge, D. C., P. Elliott & G. D. Moggridge, 2006. Microencapsulated biobullets for the control of biofouling zebra mussels. Environmental Science and Technology 40: 975–979. https://doi.org/10.1021/es050614.

    Article  CAS  PubMed  Google Scholar 

  • Aldridge, D. C., M. Salazar, A. Serna & J. Cock, 2008. Density-dependent effects of a new invasive false mussel, Mytilopsis trautwineana (Tryon 1866), on shrimp, Litopenaeus vannamei (Boone 1931), aquaculture in Colombia. Aquaculture 281: 34–42. https://doi.org/10.1016/j.aquaculture.2008.05.022.

    Article  Google Scholar 

  • Araujo, R., D. Moreno & M. A. Ramos, 1993. The Asiatic clam Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) in Europe. American Malacological Bulletin 10: 39–49.

    Google Scholar 

  • Atkinson, C. L., 2013. Razor-backed musk turtle (Sternotherus carinatus) diet across a gradient of invasion. Herpetological Conservation and Biology 8: 561–570.

    Google Scholar 

  • Bai, J., Y. Chen, Z. Ning, S. Liu, C. Xu & J. K. Yan, 2020. Proteoglycan isolated from Corbicula fluminea exerts hepato-protective effects against alcohol-induced liver injury in mice. International Journal of Biological Macromolecules 142: 1–10. https://doi.org/10.1016/j.ijbiomac.2019.12.001.

    Article  CAS  PubMed  Google Scholar 

  • Barbour, J. H., S. McMenamin, J. T. A. Dick, M. E. Alexander & J. M. Caffrey, 2013. Biosecurity measures to reduce secondary spread of the invasive freshwater Asian clam, Corbicula fluminea (Müller, 1774). Management of Biological Invasions 4: 219–230. https://doi.org/10.3391/mbi.2013.4.3.04.

    Article  Google Scholar 

  • Belz, C. E., G. Darrigran, O. S. Mäder Netto, W. A. Boeger & P. J. Ribeiro Junior, 2012. Analysis of four dispersion vectors in inland waters: the case of the invading bivalves in South America. Journal of Shellfish Research 31: 777–784. https://doi.org/10.2983/035.031.0322.

    Article  Google Scholar 

  • Beric, B. & H. J. MacIsaac, 2015. Determinants of rapid response success for alien invasive species in aquatic ecosystems. Biological Invasions 17: 3327–3335. https://doi.org/10.1007/s10530-015-0959-3.

    Article  Google Scholar 

  • Bespalaya, Y. V., D. M. Palatov, M. Y. Gofarov, A.V. Kondakov, A. V. Kropotin, R. Sousa, J. Taskinen, K. Inkhavilay, K. Tanmuangpak, S. Tumpeesuwan, I. V. Vikhrev & I. N. Bolotov, in press. Associations of mayfly larvae with Corbicula clams. Biological Journal of the Linnean Society.

  • Bespalaya, Y. V., I. N. Bolotov, O. V. Aksenova, A. V. Kondakov, M. Y. Gofarov, T. M. Laenko, S. E. Sokolova, A. R. Shevchenko & O. V. Travina, 2018. Aliens are moving to the Arctic frontiers: an integrative approach reveals selective expansion of androgenetic hybrid Corbicula lineages towards the North of Russia. Biological Invasions 20: 2227–2243.

    Article  Google Scholar 

  • Bespalaya, Y. V., R. Sousa, M. Y. Gofarov, A. V. Kondakov, A. V. Kropotin, D. Palatov, O. V. Vikhrev & I. N. Bolotov, 2023a. An exploration of the hidden endosymbionts of Corbicula in the native range. Ecology 104(1): 3836. https://doi.org/10.1002/ecy.3836.

    Article  Google Scholar 

  • Bespalaya, Y. V., D. M. Palatov, M. Y. Gofarov, A. V. Kondakov, A. V. Kropotin, R. Sousa, J. Taskinen, K. Inkhavilay, K. Tanmuangpak, S. Tumpeesuwan, I. V. Vikhrev & I. N. Bolotov, 2023b. Associations of mayfly larvae with Corbicula clams. Biological Journal of the Linnean Society 138: 169–193. https://doi.org/10.1093/biolinnean/blac143.

    Article  Google Scholar 

  • Bespalaya, Y. V., R. Sousa, M. Y. Gofarov, A. V. Kondakov, A. V. Kropotin, D. Palatov, O. V. Vikhrev & I. N. Bolotov, 2023c. An exploration of the hidden endosymbionts of Corbicula in the native range. Ecology 104(1): e3836. https://doi.org/10.1002/ecy.3836.

    Article  PubMed  Google Scholar 

  • BioBullets, 2012. BioBullets para el control de obstrucciones de mejillon cebra en el systems de regadio Espanol. Report for Confederación Hidrográfica del Ebro. https://docplayer.es/80613610-Biobullets-para-el-control-de.html

  • Bódis, E., J. Nosek, N. Oertel, B. Tóth & Z. Fehér, 2011. A comparative study of two Corbicula morphs (Bivalvia, Corbiculidae) inhabiting river Danube. International Review of Hydrobiology 96(3): 257–273. https://doi.org/10.1002/iroh.201111344.

    Article  Google Scholar 

  • Bódis, E., B. Tóth & R. Sousa, 2014. Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia 735: 253–262. https://doi.org/10.1007/s10750-013-1445-5.

    Article  Google Scholar 

  • Bódis, E., B. Tóth, P. Borza, É. Ács, J. Szekeres & R. Sousa, 2014b. Empty native and invasive bivalve shells as benthic habitat modifiers in a large river. Limnologica 49: 1–9. https://doi.org/10.1016/j.limno.2014.07.002.

    Article  Google Scholar 

  • Bodon, M., J. López-Soriano, S. Quiñonero-Salgado, G. Nardi, I. Niero, S. Cianfanelli, A. Dal Mas, F. Elvio, F. Baldessin, F. Turco, P. Ercolini, G. N. Baldaccini & S. Costa, 2020. Unravelling the complexity of Corbicula clams invasion in Italy (Bivalvia: Cyrenidae). Bollettino Malacologico 56: 127–171.

    Google Scholar 

  • Boltovskoy, D., I. Izaguirre & N. Correa, 1995. Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312: 171–182. https://doi.org/10.1007/BF00015510.

    Article  Google Scholar 

  • Bonificio, W. D. & D. R. Clarke, 2016. Rare-earth separation using bacteria. Environmental Science & Technology Letters 3(4): 180–184. https://doi.org/10.1021/acs.estlett.6b00064.

    Article  CAS  Google Scholar 

  • Bourman, R. P., C. V. Murray-Wallace, C. Wilson, L. Mosley, J. Tibby, D. D. Ryan, E. D. De Carli, A. Tulley, A. P. Belperio, D. Haynes, A. Roberts, C. Westell, E. J. Barnett, S. Dillenburg, L. B. Beheregaray & P. A. Hesp, 2022. Holocene freshwater history of the Lower River Murray and its terminal lakes, Alexandrina and Albert, South Australia, and its relevance to contemporary environmental management. Australian Journal of Earth Sciences. https://doi.org/10.1080/08120099.2022.2019115.

    Article  Google Scholar 

  • Brandão, F. P., J. L. Pereira, F. Gonçalves & B. Nunes, 2014. The impact of paracetamol on selected biomarkers of the mollusc species Corbicula fluminea. Environmental Toxicology 29(1): 74–83. https://doi.org/10.1002/tox.20774.

    Article  CAS  PubMed  Google Scholar 

  • Britton, J. C. & B. Morton, 1986. Polymorphism in Corbicula fluminea (Bivalvia: Corbiculoidea) from North America. Malacological Review 19: 1–43.

    Google Scholar 

  • Brook, B. W., N. S. Sodhi & C. J. Bradshaw, 2008. Synergies among extinction drivers under global change. Trends in Ecology & Evolution 23: 453–460. https://doi.org/10.1016/j.tree.2008.03.011.

    Article  Google Scholar 

  • Byrne, R. A., R. F. McMahon & T. H. Dietz, 1988. Temperature and relative humidity effects on aerial exposure tolerance in the freshwater bivalve Corbicula fluminea. Biological Bulletin 175: 253–260. https://doi.org/10.2307/1541566.

    Article  Google Scholar 

  • CABI, 2022. Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc.

  • Caffrey, J. M., J. T. A. Dick, F. E. Lucy, E. Davis, A. Niven & N. E. Coughlan, 2016. First record of the Asian clam Corbicula fluminea (Müller, 1774) (Bivalvia, Cyrenidae) in Northern Ireland. BioInvasions Records 5: 239–244. https://doi.org/10.3391/bir.2016.5.4.08.

    Article  Google Scholar 

  • Castañeda, R. A., E. Cvetanovska, K. M. Hamelin, M. A. Simard & A. Ricciardi, 2018. Distribution, abundance and condition of an invasive bivalve (Corbicula fluminea) along an artificial thermal gradient in the St. Lawrence River. Aquatic Invasions 13: 379–392. https://doi.org/10.3391/ai.2018.13.3.06.

    Article  Google Scholar 

  • Castro, P. S., M. I. Ilarri, V. Modesto, C. Antunes & R. Sousa, 2018. Palatability of the Asian clam Corbicula fluminea (Muller 1774) in an invaded system. Hydrobiologia 810: 97–108. https://doi.org/10.1007/s10750-017-3136-0.

    Article  Google Scholar 

  • Cataldo, D. & D. Boltovskoy, 1998. Population dynamics of Corbicula fluminea (Bivalvia) in the Paraná River delta (Argentina). Hydrobiologia 38: 153–163. https://doi.org/10.1023/A:1003428728693.

    Article  Google Scholar 

  • Chandra, R., 2015. Advances in Biodegradation and Bioremediation of Industrial Waste, CRC Press, Boca Raton, FL, USA:

    Book  Google Scholar 

  • Cherry, D. S., J. L. Scheller, N. L. Cooper & J. R. Bidwell, 2005. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) I: water-column ammonia levels and ammonia toxicity. Journal of the North American Benthological Society 24: 369–380. https://doi.org/10.1899/04-073.1.

    Article  Google Scholar 

  • Cherry, D. S., J. H. Rodgers, R. L. Graney & J. Cairns, 1980. Dynamics and control of the Asiatic clam in the New River, Virginia. Bulletin of the Virginia Water Resources Center 123: 1–72.

    Google Scholar 

  • Chiarello, M., J. R. Bucholz, M. McCauley, S. N. Vaughn, G. W. Hopper, I. Sánchez González, C. L. Atkinson, J. D. Lozier & C. R. Jackson, 2022. Environment and co-occurring captive mussel species, but not host genetics, impact the microbiome of a freshwater invasive species (Corbicula fluminea). Frontiers in Microbiology 13: 800061. https://doi.org/10.3389/fmicb.2022.800061.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chijimatsu, T., M. Umeki, Y. Okuda, K. Yamada, H. Oda & S. Mochizuki, 2011. The fat and protein fractions of freshwater clam (Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet. British Journal of Nutrition 105(4): 526–534. https://doi.org/10.1017/S0007114510004058.

    Article  CAS  PubMed  Google Scholar 

  • Ciutti, F. & C. Cappelletti, 2009. First record of Corbicula fluminalis (Müller, 1774) in Lake Garda (Italy), living in sympatry with Corbicula fluminea (Müller, 1774). Journal of Limnology 68(1): 162–165.

  • Clavero, M., R. Araujo, J. Calzada, M. Delibes, N. Fernández, C. Gutiérrez-Expósito, E. Revilla & J. Román, 2012. The first invasive bivalve in African fresh waters: invasion portrait and management options. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 277–280. https://doi.org/10.1002/aqc.2231.

    Article  Google Scholar 

  • Clusa, L., L. Miralles, A. Basanta, C. Escot & E. García-Vázquez, 2017. eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. PLoS ONE 12: e0188126. https://doi.org/10.1371/journal.pone.0188126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, R. R., P. V. Dresler, E. J. Phillips & R. L. Cory, 1984. The effect of the Asiatic clam, Corbicula fluminea, on phytoplankton of the Potomac River, Maryland. Limnology and Oceanography 29: 170–180. https://doi.org/10.4319/lo.1984.29.1.0170.

    Article  Google Scholar 

  • Colwell, H., J. Ryder, R. Nuzzo, M. Reardon, R. Holland & W. H. Wong, 2017. Invasive Asian clams (Corbicula fluminea) recorded from 2001 to 2016 in Massachusetts, USA. Management of Biological Invasions 8: 507–515. https://doi.org/10.3391/mbi.2017.8.4.05.

    Article  Google Scholar 

  • Congdi, W., 2019. Reproduction characteristics and genetic difference of black and yellow shell color of clam honze lake river. Master thesis: 1–98.

  • Congdi, W., Z. Jianqi, X. Siyu, B. Zhiyi, H. Zhongjun, X. Can, C. Lin & W. Guiling, 2020. The Biological Study on the Breeding Peak of Corbicula fluminea in Hongze Lake. Genomics and Applied Biology 5: 2028–2032.

    Google Scholar 

  • Cooper, N. L., J. R. Bidwell & D. S. Cherry, 2005. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) II: porewater ammonia. Journal of the North American Benthological Society 24: 381–394. https://doi.org/10.1899/04-074.1.

    Article  Google Scholar 

  • Coughlan, N. E., A. L. Stevens, T. C. Kelly, J. T. A. Dick & M. A. K. Jansen, 2017. Zoochorous dispersal of freshwater bivalves: an overlooked vector in biological invasions? Knowledge and Management of Aquatic Ecosystems 418: 42. https://doi.org/10.1051/kmae/2017037.

    Article  Google Scholar 

  • Coughlan, N. E., D. A. Walsh, J. M. Caffrey, E. Davis, F. E. Lucy, R. N. Cuthbert & J. T. A. Dick, 2018. Cold as ice: a novel eradication and control method for invasive Asian clam, Corbicula fluminea, using pelleted dry ice. Management of Biological Invasions 9: 463–474. https://doi.org/10.3391/mbi.2018.9.4.09.

    Article  Google Scholar 

  • Coughlan, N. E., R. N. Cuthbert, E. M. Cunningham, K. Crane, J. M. Caffrey, F. E. Lucy, E. Davis & J. T. A. Dick, 2019a. Beds are burning: eradication and control of invasive Asian clam, Corbicula fluminea, with rapid open-flame burn treatments. Management of Biological Invasions 10: 86–499. https://doi.org/10.3391/mbi.2019.10.3.06.

    Article  Google Scholar 

  • Coughlan, N. E., R. N. Cuthbert, J. W. E. Dickey, K. Crane, J. M. Caffrey, F. E. Lucy, E. Davis & J. T. A. Dick, 2019b. Better biosecurity: spread prevention of the invasive Asian clam, Corbicula fluminea (Müller, 1774). Management of Biological Invasions 10: 111–126. https://doi.org/10.3391/mbi.2019.10.1.07.

    Article  Google Scholar 

  • Coughlan, N. E., E. M. Cunningham, S. Potts, D. McSweeney, E. Healey, J. T. A. Dick, G. Y. W. Vong, K. Crane, J. M. Caffrey, F. E. Lucy, E. Davis & R. N. Cuthbert, 2020a. Steam and flame applications as novel methods of population control for invasive Asian clam (Corbicula fluminea) and Zebra mussel (Dreissena polymorpha). Environmental Management 66: 654–663. https://doi.org/10.1007/s00267-020-01325-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coughlan, N. E., R. N. Cuthbert & J. T. A. Dick, 2020b. Aquatic biosecurity remains a damp squib. Biodiversity and Conservation 29: 3091–3093. https://doi.org/10.1007/s10531-020-02011-8.

    Article  Google Scholar 

  • Coughlan, N. E., R. N. Cuthbert, E. M. Cunningham, P. Sotts, D. McSweeney, G. Y. W. Vong, E. Healey, K. Crane, J. M. Caffrey, F. E. Lucy, E. Davis & J. T. A. Dick, 2021. Smoke on the water: comparative assessment of combined thermal shock treatments for control of invasive Asian clam, Corbicula fluminea. Environmental Management 68: 117–125. https://doi.org/10.1007/s00267-021-01474-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coughlan, N. E., J. W. E. Dickey, J. T. A. Dick, V. Médoc, M. McCard, G. Lacroix, S. Fiorini, A. Millot & R. N. Cuthber, 2022. When worlds collide: invader-driven benthic habitat complexity alters predatory impacts of invasive and native predatory fishes. Science of the Total Environment 843: 156876. https://doi.org/10.1016/j.scitotenv.2022.156876.

    Article  CAS  PubMed  Google Scholar 

  • Counts, C. L., 1981. Corbicula fluminea (Bivalvia: Corbiculidea) in British Columbia. Nautilus 95: 12–13.

    Google Scholar 

  • Cowart, D. A., M. A. Renshaw, C. A. Gantz, J. Umek, S. Chandra, S. P. Egan, D. M. Lodge & E. R. Larson, 2018. Development and field validation of an environmental DNA (eDNA) assay for invasive clams of the genus Corbicula. Management of Biological Invasions 9: 27–37. https://doi.org/10.3391/mbi.2018.9.1.03.

    Article  Google Scholar 

  • Crane, K., C. R. N. Cuthber, J. T. A. Dick, L. Kregting, H. J. MacIsaac & N. E. Coughlan, 2018. Full steam ahead: direct steam exposure to inhibit spread of invasive aquatic macrophytes. Biological Invasions. Doi: https://doi.org/10.1007/s10530-018-1901-2

  • Crespo, D., M. Dolbeth, S. Leston, R. Sousa & M. Â. Pardal, 2015. Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability. Biological Invasions 17(2087–2101): 2087–2101. https://doi.org/10.1007/s10530-015-0862-y.

    Article  Google Scholar 

  • Cummings, K. S. & D. L. Graf, 2009. Mollusca: Bivalvia. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates Academic Press, San Diego: 309–484.

    Google Scholar 

  • Danford, D. W. & J. E. Joy, 1984. Aspidogastrid (Trematoda) parasites of bivalve molluscs in western West Virginia. Proceedings of the Helminthological Society of Washington 51(2): 301–305.

    Google Scholar 

  • Dame, R. F., 2011. Ecology of marine bivalves: An Ecosystem Approach, Lewis Publishers, CRC Press, Boca Raton: https://doi.org/10.1201/b11220.

    Book  Google Scholar 

  • Daogui, D., L. Hongyuan, H. Wanming, Z. Qiong & G. Longgen, 2005. Effects of eutrophication on distribution and population density of Corbicula fluminea and Bellamya sp. in Chaohu Lake. Chinese Journal of Applied Ecology 8: 1502–1506.

    Google Scholar 

  • Dashinov, D. & E. Uzunova, 2020. Diet and feeding strategies of round goby, Neogobius melanostomus (Pallas, 1814) from the invasion front in the Danube River tributaries (Bulgaria): ontogenetic shift and seasonal variation. Limnologica 83: 125796. https://doi.org/10.1016/j.limno.2020.125796.

    Article  Google Scholar 

  • Davis, E., J. M. Caffrey, N. E. Coughlan, J. T. A. Dick & F. E. Lucy, 2018. Communications, outreach and citizen science: spreading the word about invasive alien species. Management of Biological Invasions 9: 515–525. https://doi.org/10.3391/mbi.2018.9.4.14.

    Article  Google Scholar 

  • De Kock, K. N. & C. T. Wolmarans, 2007. Distribution and habitats of Corbicula fluminalis africana (Mollusca: Bivalvia) in South Africa. Water SA 33(5): 709–715.

    Google Scholar 

  • Deliang, L., Z. Ting, X. Diaoyi, G. Wangbao, X. Jun, L. Zujun & L. Anmin, 2013. Standing crops and temporal-spatial distribution of Corbicula fluminea ( Müller, 1774) in Lake Datong, Hunan Province. Journal of Lake Sciences 5: 743–748.

    Article  Google Scholar 

  • Dias, E., P. Morais, A. M. Cotter, C. Antunes & J. C. Hoffman, 2016. Estuarine consumers utilize marine, estuarine and terrestrial organic matter and provide connectivity among these food webs. Marine Ecology Progress Series 554: 21–34. https://doi.org/10.3354/meps11794.

    Article  Google Scholar 

  • Doherty, F. G., J. L. Farris, D. S. Cherry & J. Cairns, 1986. Control of the freshwater fouling bivalve Corbicula fluminea by halogenation. Archives of Environmental Contamination and Toxicology 15: 535–542. https://doi.org/10.1007/BF01056567.

    Article  CAS  Google Scholar 

  • Domagała, J., A. M. Labecka, M. Pilecka-Rapacz & B. Migdalska, 2004. Corbicula fluminea (O.F. Müller, 1774) (Bivalvia: Corbiculidae): a species new to the Polish malacofauna. Folia Malacologica 12: 145–148. https://doi.org/10.12657/folmal.012.011.

    Article  Google Scholar 

  • Domingues, A., I. C. Rosa, J. P. da Costa, T. A. Rocha-Santos, F. J. Gonçalves, R. Pereira & J. L. Pereira, 2020. Potential of the bivalve Corbicula fluminea for the remediation of olive oil wastewaters. Journal of Cleaner Production 252: 119773. https://doi.org/10.1016/j.jclepro.2019.119773.

    Article  CAS  Google Scholar 

  • Domingues, E., E. Fernandes, J. Gomes & R. C. Martins, 2021. Swine wastewater treatment by Fenton’s process and integrated methodologies involving coagulation and biofiltration. Journal of Cleaner Production 293: 126105. https://doi.org/10.1016/j.jclepro.2021.126105.

    Article  CAS  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182. https://doi.org/10.1017/S1464793105006950.

    Article  PubMed  Google Scholar 

  • Elton, C. S., 1958. The Ecology of Invasions by Animals and Plants, Springer Nature, New York:

    Book  Google Scholar 

  • Ferreira, R., J. Gomes, R. C. Martins, R. Costa & R. M. Quinta-Ferreira, 2018. Winery wastewater treatment by integrating Fenton’s process with biofiltration by Corbicula fluminea. Journal of Chemical Technology & Biotechnology 93(2): 333–339. https://doi.org/10.1002/jctb.5355.

    Article  CAS  Google Scholar 

  • Ferreira-Rodríguez, N., 2019. Spatial aggregation of native with non-native freshwater bivalves and activity depletion under summer heat waves: ‘dangerous liaisons’ in a climate change context. Hydrobiologia 834: 75–85. https://doi.org/10.1007/s10750-019-3910-2.

    Article  Google Scholar 

  • Ferreira-Rodríguez, N. & I. Pardo, 2016. An experimental approach to assess Corbicula fluminea (Müller, 1774) resistance to osmotic stress in estuarine habitats. Estuarine, Coastal and Shelf Science 176: 110–116.

    Article  Google Scholar 

  • Ferreira-Rodríguez, N. & I. Pardo, 2018. Biocontrol: the response of native oystercatchers to a non-native clam invasion. Journal of Avian Biology 49: 1–7. https://doi.org/10.1111/jav.01633.

    Article  Google Scholar 

  • Ferreira-Rodríguez, N., R. Sousa & I. Pardo, 2016. Negative effects of Corbicula fluminea over native freshwater mussels. Hydrobiologia 810: 85–95. https://doi.org/10.1007/s10750-016-3059-1.

    Article  Google Scholar 

  • Ferreira-Rodríguez, N., O. Defeo, G. Macho & I. Pardo, 2019a. A social-ecological system framework to assess biological invasions: Corbicula fluminea in Galicia (NW Iberian Peninsula). Biological Invasions 21: 587–602. https://doi.org/10.1007/s10530-018-1846-5.

    Article  Google Scholar 

  • Ferreira-Rodríguez, N., J. Iglesias & I. Pardo, 2019b. Corbicula fluminea affecting supporting ecosystem services through nutrient and biogenic matter incorporation in invaded estuaries. Fundamental and Applied Limnology 192(4): 269–280. https://doi.org/10.1127/fal/2019/1132.

    Article  Google Scholar 

  • Ferreira-Rodríguez, N., A. B. Pavel & D. Cogălniceanu, 2021. Integrating expert opinion and traditional ecological knowledge in invasive alien species management: Corbicula in Eastern Europe as a model. Biological Invasions 23(4): 1087–1099. https://doi.org/10.1007/s10530-020-02420-4.

    Article  Google Scholar 

  • Firmiano, K. R., D. M. P. Castro, M. S. Linares & M. Callisto, 2021. Functional responses of aquatic invertebrates to anthropogenic stressors in riparian zones of Neotropical savanna streams. Science of The Total Environment 753: 141865. https://doi.org/10.1016/j.scitotenv.2020.141865.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, S. L. H., 1974. Clams and mussels (Mollusca: Bivalvia). In Hart, C. W. J. & S. L. H. Fuller (eds), Pollution Ecology of Freshwater Invertebrates Academic Press, New York: 215–273.

    Google Scholar 

  • Gallardo, B., M. Clavero, M. I. Sánchez & M. Vilà, 2016. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology 22(1): 151–163. https://doi.org/10.1111/gcb.13004.

    Article  PubMed  Google Scholar 

  • Gama, M., D. Crespo, M. Dolbeth & P. Anastácio, 2015. Predicting global habitat suitability for Corbicula fluminea using species distribution models: the importance of different environmental datasets. Ecological Modelling 319: 163–169. https://doi.org/10.1016/j.ecolmodel.2015.06.001.

    Article  Google Scholar 

  • Gama, M., D. Crespo, M. Dolbeth & P. Anastácio, 2017. Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquatic Conservation: Marine and Freshwater Ecosystems 27(3): 675–684. https://doi.org/10.1002/aqc.2767.

    Article  Google Scholar 

  • Gangloff, M. M., K. K. Lenertz & J. W. Feminella, 2008. Parasitic mite and trematode abundance are associated with reduced reproductive output and physiological condition of freshwater mussels. Hydrobiologia 610(1): 25. https://doi.org/10.1007/s10750-008-9419-8.

    Article  Google Scholar 

  • García, M. L. & L. C. Protogino, 2005. Invasive freshwater mollusks are consumed by native fishes in South America. Journal of Applied Ichthyology 21: 34–38.

    Article  Google Scholar 

  • Glaubrecht, M., T. von Rintelen & A. V. Korniushin, 2003. Toward systematic revision of brooding freshwater Corbiculidae in Southeast Asia (Bivalvia, Veneroida): on shell morphology, anatomy and molecular phylogenetics of endemic taxa from islands in Indonesia. Malacologia 45(1): 1–40.

    Google Scholar 

  • Glöer, P. & C. Meier-Brook, 1998. Süsswassermollusken. Deutscher Jugendbund für Naturbeobachtung: 136.

  • Gomes, J., J. L. Pereira, I. C. Rosa, P. M. Saraiva, F. Gonçalves & R. Costa, 2014. Evaluation of candidate biocides to control the biofouling Asian clam in the drinking water treatment industry: an environmentally friendly approach. Journal of Great Lakes Research 40(2): 421–428. https://doi.org/10.1016/j.jglr.2014.03.013.

    Article  CAS  Google Scholar 

  • Gomes, C., R. Sousa, T. Mendes, R. Borges, P. Vilares, V. Vasconcelos, L. Guilhermino & A. Antunes, 2016. Low genetic diversity and high invasion success of Corbicula fluminea (Bivalvia, Corbiculidae) (Müller, 1774) in Portugal. PLos ONE 11(7): e0158108. https://doi.org/10.1371/journal.pone.0158108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes-dos-Santos, A., E. Froufe, D. V. Gonçalves, R. Sousa, V. Prié, M. Ghamizi, H. Benaissad, S. Varandas, A. Teixeira & M. Lopes-Lima, 2019. Freshwater conservation assessments in (semi-)arid regions: testing river intermittence and buffer strategies using freshwater mussels (Bivalvia, Unionida) in Morocco. Biological Conservation 23: 420–434. https://doi.org/10.1016/j.biocon.2019.05.038.

    Article  Google Scholar 

  • Graney, R. L., D. S. Cherry & J. Cairns, 1983. Heavy metal indicator potential of the Asiatic clam (Corbicula fluminea) in artificial stream systems. Hydrobiologia 102(2): 81–88. https://doi.org/10.1007/BF00006071.

    Article  CAS  Google Scholar 

  • Guareschi, S. & P. J. Wood, 2020. Exploring the desiccation tolerance of the invasive bivalve Corbicula fluminea (Müller 1774) at different temperatures. Biological Invasions 22: 2813–2824. https://doi.org/10.1007/s10530-020-02291-9.

    Article  Google Scholar 

  • Guisan, A., B. Petitpierre, O. Broennimann, C. Daehler & C. Kueffer, 2014. Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution 29(5): 260–269. https://doi.org/10.1016/j.tree.2014.02.009.

    Article  Google Scholar 

  • Gutiérrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101: 79–90. https://doi.org/10.1034/j.1600-0706.2003.12322.x.

    Article  Google Scholar 

  • Haag, W. R., J. Culp, A. N. Drayer, M. A. McGregor, D. E. White & S. J. Price, 2021. Abundance of an invasive bivalve, Corbicula fluminea, is negatively related to growth of freshwater mussels in the wild. Freshwater Biology 66(3): 447–457.

  • Haedtke, S. M., M. Glaubrecht & D. M. Hillis, 2011. Rare gene capture in predominantly androgenetic species. Proceedings of the National Academy of Sciences 108: 9520–9524. https://doi.org/10.1073/pnas.1106742108.

    Article  Google Scholar 

  • Haesloop, U., 1992. Establishment of the Asiatic clam Corbicula cf. fluminalis in the Tidal Weser (N. Germany). Archiv für Hydrobiologie 126(2): 175–180. https://doi.org/10.1127/archiv-hydrobiol/126/1992/175.

    Article  Google Scholar 

  • Haines-Young, R. & M. Potschin-Young, 2018. Revision of the common international classification for ecosystem services (CICES V5. 1): a policy brief. One Ecosystem 3: e27108. https://doi.org/10.3897/oneeco.3.e27108.

    Article  Google Scholar 

  • Hakenkamp, C. C. & M. A. Palmer, 1999. Introduced bivalves in freshwater ecosystems: the impact of Corbicula on organic matter cycling in a sandy stream. Oecologia 119: 445–451. https://doi.org/10.1007/s004420050806.

    Article  PubMed  Google Scholar 

  • Hakenkamp, C. C., S. G. Ribblett, M. A. Palmer, C. M. Swan, J. W. Reid & M. R. Goodison, 2001. The impact of an introduced bivalve (Corbicula fluminea) on the benthos of a sandy stream. Freshwater Biology 46(4): 491–501. https://doi.org/10.1046/j.1365-2427.2001.00700.x.

    Article  Google Scholar 

  • Hansen, G. J., T. D. Ahrenstorff, B. J. Bethke, J. D. Dumke, J. Hirsch, K. E. Kovalenko, J. F. LeDuc, R. P. Maki, H. M. Rantala & T. Wagner, 2020. Walleye growth declines following zebra mussel and Bythotrephes invasion. Biological Invasions 22: 1481–1495. https://doi.org/10.1007/s10530-020-02198-5.

    Article  Google Scholar 

  • Haponski, A. & D. Ó. Foighil, 2019. Phylogenomic analyses confirm a novel invasive North American Corbicula (Bivalvia: Cyrenidae) lineage. PeerJ 7: e7484. https://doi.org/10.7717/peerj.7484.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haubrock, P. J., R. N. Cuthbert, A. Ricciardi, C. Diagne & F. Courchamp, 2022. Economic costs of invasive bivalves in freshwater ecosystems. Diversity and Distributions 28(5): 1010–1021. https://doi.org/10.1111/ddi.13501.

    Article  Google Scholar 

  • Hebert, P. D., B. W. Muncaster & G. L. Mackie, 1989. Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusc in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 46(9): 1587–1591. https://doi.org/10.1139/f89-202.

    Article  Google Scholar 

  • Hedtke, S. M., K. Stanger-Hall, R. J. Baker & D. M. Millis, 2008. All-male asexuality: origin and maintenance of androgenesis in the Asian clam Corbicula. Evolution 62–5: 1119–1136. https://doi.org/10.1111/j.1558-5646.2008.00344.x.

    Article  CAS  Google Scholar 

  • Henderlight, K., J. Hoelzer, K. Kehl, B. McDonald, E. Peeters, J. Tutkowski & C. Widmayer, 2014. Management Plan for Control of Asian Clam (Corbicula fluminea) in the Mukwonago River Watershed. Friends of the Mukwonago River. http://mukwonagoriver.org/friends/wp-content/uploads/2015/04/Corbicula-Management-Plan-Caroll.pdf. Accessed February 2022.

  • Hongqian, P., Z. Jiangfan, Q. Ling, L. Kejing, P. Jie, Z. Cong & L. Deliang, 2020. Ploidy Investigation of Corbicula from the Yuan River, Lake Dongting Basin. Life Science Research 6: 452–458.

    Google Scholar 

  • Houki, S., M. Yamada, T. Honda & A. Komaru, 2011. Origin and possible role of males in hermaphroditic androgenetic Corbicula clams. Zoological Sciences 28: 526–531. https://doi.org/10.2108/zsj.28.526.

    Article  Google Scholar 

  • Hsieh, Y. L., H. J. Teng, Y. H. Yeh, C. H. Hsieh & C. Y. Huang, 2018. The protective effects of clams on hypercholesterolemia in late-stage triple-transgenic Alzheimer’s diseased mice hearts. Marine Drugs 16(8): 263. https://doi.org/10.3390/md16080263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, T. H., A. Komaru & J. C. Gwo, 2020. Genetic diversity and clonality of the Asian clam Corbicula fluminea are reflected by inner shell color pattern. Aquatic Invasions 15(4): 633–645.

    Article  Google Scholar 

  • Hunter, M. L., Jr., S. R. Boone, A. M. Brehm & A. Mortelliti, 2022. Modulation of ecosystem services by animal personalities. Frontiers in Ecology and the Environment 20(1): 58–63. https://doi.org/10.1002/fee.2418.

    Article  Google Scholar 

  • Hutchinson, E. G., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427. https://doi.org/10.1007/978-3-642-38007-5_26.

    Article  Google Scholar 

  • Ilarri, M. & R. Sousa, 2012. Corbicula fluminea Müller (Asian clam). In Francis, R. A. (ed), A Handbook of Global Freshwater Invasive Species Earthscan, London: 173–183. https://doi.org/10.4324/9780203127230.

    Chapter  Google Scholar 

  • Ilarri, M. I., C. Antunes, L. Guilhermino & R. Sousa, 2011. Massive mortality of the Asian clam Corbicula fluminea in a highly invaded area. Biological Invasions 13: 277–280. https://doi.org/10.1007/s10530-010-9833-5.

    Article  Google Scholar 

  • Ilarri, M. I., F. Freitas, S. Costa-Dias, C. Antunes, L. Guilhermino & R. Sousa, 2012. Associated macrozoobenthos with the invasive Asian clam Corbicula fluminea. Journal of Sea Research 72: 113–120. https://doi.org/10.1016/j.seares.2011.10.002.

    Article  Google Scholar 

  • Ilarri, M. I., A. T. Souza, C. Antunes, L. Guilhermino & R. Sousa, 2014. Influence of the Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) on estuarine epibenthic assemblages. Estuarine Coastal and Shelf Science 143: 12–19. https://doi.org/10.1016/j.ecss.2014.03.017.

    Article  Google Scholar 

  • Ilarri, M. I., A. T. Souza, V. Modesto, L. Guilhermino & R. Sousa, 2015a. Differences in the macrozoobenthic fauna colonizing empty bivalve shells before and after invasion by Corbicula fluminea. Marine and Freshwater Research 66: 549–558. https://doi.org/10.1071/MF14004.

    Article  Google Scholar 

  • Ilarri, M. I., A. T. Souza & R. Sousa, 2015b. Contrasting decay rates of freshwater bivalves’ shells: aquatic versus terrestrial habitats. Limnologica 51: 8–14. https://doi.org/10.1016/j.limno.2014.10.002.

    Article  Google Scholar 

  • Ilarri, M., L. Amorim, A. T. Souza & R. Sousa, 2018. Physical legacy of freshwater bivalves: effects of habitat complexity on the taxonomical and functional diversity of invertebrates. Science of the Total Environment 634: 1398–1405. https://doi.org/10.1016/j.scitotenv.2018.04.070.

    Article  CAS  PubMed  Google Scholar 

  • Ilarri, M. I., A. T. Souza, L. Amorim & R. Sousa, 2019. Decay and persistence of empty bivalve shells in a temperate riverine system. Science of the Total Environment 683: 185–192. https://doi.org/10.1016/j.scitotenv.2019.05.208.

    Article  CAS  PubMed  Google Scholar 

  • Ilarri, M. I., R. G. Monteiro, R. Ozório & R. Sousa, 2022. Spatio-temporal and intra-specific variations in the physiological and biochemical condition of the invasive bivalve Corbicula fluminea. Hydrobiologia. https://doi.org/10.1007/s10750-021-04733-4.

    Article  Google Scholar 

  • Inza, B., F. Ribeyre & A. Boudou, 1998. Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury): uptake and depuration in Corbicula fluminea. Effects of temperature and pH. Aquatic Toxicology 43(4): 273–285. https://doi.org/10.1016/S0166-445X(98)00055-1.

    Article  CAS  Google Scholar 

  • Ishibasi, R. & A. Komaru, 2006. Abortive second meiosis detected in cytochalasin-treated eggs in androgenetic diploid Corbicula fluminea. Development, Growth and Differentiation 48: 277–282. https://doi.org/10.1111/j.1440-169X.2006.00862.x.

    Article  Google Scholar 

  • Ishibasi, R., A. Komaru, K. Ookubo & M. Kiyomoto, 2002. The second meiosis occurs in cytochalasin D-treated eggs of Corbicula leana even though it is not observed in control androgenetic eggs because the maternal chromosomes are extruded at first meiosis. Developmental Biology 244(37): 37–43. https://doi.org/10.1006/dbio.2002.0590.

    Article  CAS  Google Scholar 

  • Ishibasi, R., K. Ookubo, M. Aoki, M. Utaki, A. Komaru & K. Kawamura, 2003. Androgenetic reproduction in a freshwater diploid clam Corbicula fluminea (Bivalvia: Corbiculidae). Zoological Science 20: 727–732. https://doi.org/10.2108/zsj.20.727.

    Article  Google Scholar 

  • Ismail, N. S., J. P. Tommerdahl, A. B. Boehm & R. G. Luthy, 2016. Escherichia coli reduction by bivalves in an impaired river impacted by agricultural land use. Environmental Science & Technology 50(20): 11025–11033. https://doi.org/10.1021/acs.est.6b03043.

    Article  CAS  Google Scholar 

  • Isom, B. G., 1986. ASTM (American Society for Testing and Materials) Special Technical Publication, 894. Rationale for Sampling and Interpretation of Ecological Data in the Assessment of Freshwater Ecosystems. American Society for Testing and Materials Philadelphia PA.

  • Ituarte, C. F., 1985. Growth dynamics in a natural population of Corbicula fluminea (Bivalvia Sphaeriacea) at Punta Atalaya, Río de la Plata, Argentina. Studies on Neotropical Fauna and Environment 20(4): 217–225. https://doi.org/10.1080/01650528509360693.

    Article  Google Scholar 

  • Ituarte, C. F., 1994. Corbicula and Neocorbicula (Bivalvia: Corbiculidae) in the Paraná, Urugay, and Río de La Plata Basins. The Nautilius 107(4): 129–135.

    Google Scholar 

  • Jenkins, M., 2003. Prospects for biodiversity. Science 302: 1175–1177. https://doi.org/10.1126/science.1088666.

    Article  CAS  PubMed  Google Scholar 

  • Jiao, G., H. Yanqing, H. Hu, D. Yanyan, Z. Pengfei & L. Kuanyi, 2021. Effects of freshwater bivalve Corbicula fluminea on the growth of submerged macrophytes Vallisneria natans. Chinese Journal of Ecology 5: 1512–1520.

    Google Scholar 

  • Jokela, J., J. Taskinen, P. Mutikainen & K. Kopp, 2005. Virulence of parasites in hosts under environmental stress: experiments with anoxia and starvation. Oikos 108(1): 156–164. https://doi.org/10.1111/j.0030-1299.2005.13185.x.

    Article  Google Scholar 

  • Jou, L. J., W. Y. Chen & C. M. Liao, 2009. Online detection of waterborne bioavailable copper by valve daily rhythms in freshwater clam Corbicula fluminea. Environmental Monitoring and Assessment 155(1): 257–272. https://doi.org/10.1007/s10661-008-0433-0.

    Article  CAS  PubMed  Google Scholar 

  • Karatayev, A. Y., S. E. Mastitsky, L. E. Burlakova, V. A. Karatayev, M. M. Hajduk & D. B. Conn, 2012. Exotic molluscs in the Great Lakes host epizootically important trematodes. Journal of Shellfish Research 31(3): 885–894. https://doi.org/10.2983/035.031.0337.

    Article  Google Scholar 

  • Karatayev, A. Y., D. K. Padilla, D. Minchin, D. Boltovskoy & L. E. Burlakova, 2007. Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Biological Invasions 9(2): 161–180. https://doi.org/10.1007/s10530-006-9013-9.

    Article  Google Scholar 

  • Kinzelbach, R., 1992. The distribution of the freshwater clam Corbicula fluminalis in the Near East (Bivalvia: Corbiculidae). Zoology in the Middle East 6: 51–61.

    Article  Google Scholar 

  • Komaru, A., S. Houki, M. Yamada, T. Miyake, M. Obata & K. Kawamura, 2012. 28S rDNA haplotypes of males are distinct from those of androgenetic hermaphrodites in the clam Corbicula leana. Development Genes and Evolution 222: 181–187.

    Article  CAS  PubMed  Google Scholar 

  • Komaru, A., T. Kawagishi & K. Konishi, 1998. Cytological evidence of spontaneous androgenesis in the freshwater clam Corbicula leana Prime. Development Genes and Evolution 208: 46–50.

    Article  CAS  PubMed  Google Scholar 

  • Komaru, A. & K. Konishi, 1999. Non-reductional spermatozoa in three shell color types of the freshwater clam Corbicula fluminea in Taiwan. Zoological Science 16: 105–108. https://doi.org/10.2108/zsj.16.105.

    Article  Google Scholar 

  • Komaru, A., K. Konishi, I. Nakayama, T. Kobayashi, H. Sakai & K. Kawamura, 1997. Hermaphrooditic freshwater clams in the genus Corbicula produce non-reductional spermatozoa with somatic DNA content. Biological Bulletin 193: 320–323. https://doi.org/10.2307/1542934.

    Article  CAS  PubMed  Google Scholar 

  • Komaru, A., A. Kumamoto & R. Ishibashi, 2001. Possible elevation of ploidy levels by accidental formation of female pronucleus in androgenetic clam Corbicula leana. Developmental Zoology 18: 87.

    Google Scholar 

  • Komaru, A., A. Kumamoto, A. Kato, R. Ishibashi, M. Obata & T. Nemot, 2006. A hypothesis of ploidy elevation by formation of a female pronucleus in the androgenetic clam Corbicula fluminea in the Tone River Estuary, Japan. Zoological Science 23: 529–532. https://doi.org/10.2108/zsj.23.529.

    Article  PubMed  Google Scholar 

  • Komaru, A., K. Ookubo & M. Kiyomoto, 2000. All meiotic chromosomes and both centrosomes at spindle pole in the zygotes discarded as two polar bodies in clam Corbicula leana: unusual polar body formation observed by antitubulin immunofluorescence. Development Genes and Evolution 210: 263–269. https://doi.org/10.1007/s004270050313.

    Article  CAS  PubMed  Google Scholar 

  • Komaru, A., M. Yamada & S. Houki, 2013. Relationship between two androgenetic clam species, Corbicula leana and Corbicula fluminea, inferred from mitochondrial cytochrome b and nuclear 28S rDNA markers. Zoological Science 30: 360–365. https://doi.org/10.2108/zsj.30.360.

    Article  PubMed  Google Scholar 

  • Konishi, K., K. Kawamura, H. Furuita & A. Komaru, 1998. Spermatogenesis of the freshwater clam Corbicula aff. fluminea Müller (Bivalvia: Corbiculidae). Journal of Shellfish Research 17(1): 185–189.

    Google Scholar 

  • Korniushin, A., 2004. A revision of some Asian and African freshwater clams assigned to Corbicula fluminalis (Müller, 1774) (Mollusca: Bivalvia: Corbiculidae), with review of anatomical characters and reproductive features based on museum collections. Hydrobiologia 529(1): 251–270. https://doi.org/10.1007/s10750-004-9322-x.

    Article  Google Scholar 

  • Korniushin, A. V. & M. Glaubrecht, 2003. Novel reproductive modes in freshwater clams: brooding and larval morphology in Southeast Asian taxa of Corbicula (Mollusca, Bivalvia, Corbiculidae). Acta Zoologica (stokholm) 84: 293–315. https://doi.org/10.1046/j.1463-6395.2003.00150.x.

    Article  Google Scholar 

  • Kraemer, L. R., C. Swanson, M. Galloway & R. Kraemer, 1986. Biological basis of behavior in Corbicula fluminea. II. Functional morphology of reproduction and development and review of evidence for self-fertilization. American Malacological Bulletin 2: 193–201.

    Google Scholar 

  • Kyrou, K., A. Hammond, R. Galizi, N. Kranjc, A. Burt, A. K. Beaghton, T. Nolan & A. Crisanti, 2018. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology 36(1062): 1066. https://doi.org/10.1038/nbt.4245.

    Article  CAS  Google Scholar 

  • Labecka, A. M., 2009. Cykl płciowy zawleczonych gatunków małży Sinanodonta woodiana (Lea, 1834), Corbicula fluminea (O. F. Müller, 1774) oraz Corbicula fluminalis (O. F. Müller, 1774) (Mollusca: Bivalvia) z kanału zrzutowego wód pochłodniczych Elektrowni Dolna Odra. PhD thesis, University of Szczecin, Szczecin.

  • Labecka, A. M., J. Domagała & M. Pilecka-Rapacz, 2005. First record of Corbicula fluminalis (O.F. Müller, 1774) (Bivalvia: Corbiculidae) in Poland. Folia Malacologica 13: 25–27. https://doi.org/10.12657/folmal.013.003.

    Article  Google Scholar 

  • Labrot, F., J. F. Narbonne, P. Ville, M. Saint Denis & D. Ribera, 1999. Acute toxicity, toxicokinetics, and tissue target of lead and uranium in the clam Corbicula fluminea and the worm Eisenia fetida: comparison with the fish Brachydanio rerio. Archives of Environmental Contamination and Toxicology 36(2): 167–178. https://doi.org/10.1007/s002449900457.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T., S. Siripattrawan, C. F. Ituarte & D. Ó. Foighil, 2005. Invasion of the clonal clams: Corbicula lineages in the New World. American Malacological Bulletin 20(1/2): 113–122.

    Google Scholar 

  • Li, T. Y., F. Sun & S. B. Huang, 2007. The concentration and tissues accumulation of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in Corbicula fluminea of Minjiang River. Journal of Southwest China Normal University: Natural Science 32(6): 72–77.

    Google Scholar 

  • Linares, M. S., P. H. Amaral & M. Callisto, 2022. Corbicula fluminea (Corbiculidae, Bivalvia) alters the taxonomic and functional structure of benthic assemblages in neotropical hydropower reservoirs. Ecological Indicators 141: 109115. https://doi.org/10.1016/j.ecolind.2022.109115.

    Article  Google Scholar 

  • Long, D. P. & R. F. Mcmahon, 1987. High-Temperature Inhibition of Growth and Reproduction in a Natural Field Population of Corbicula fluminea (Muller). American Zoologist 27(4): A39. https://doi.org/10.1007/s002449900457.

    Article  Google Scholar 

  • López-Soriano, J., S. Quiñonero-Salgado, C. Capelletti, F. Faccenda & F. Ciutti, 2018. Unraveling the complexity of Corbicula clams invasion in Lake Garda (Italy). Advances in Oceanography and Limnology 9(2): 97–104.

    Article  Google Scholar 

  • Lounibos, L. P., R. L. Escher & R. Lourenço-De-Oliveira, 2003. Asymmetric evolution of photoperiodic diapause in temperate and tropical invasive populations of Aedes albopictus (Diptera: Culicidae). Annals of the Entomological Society of America 96(4): 512–518. https://doi.org/10.1603/0013-8746.

    Article  Google Scholar 

  • Lovell, S. J., S. F. Stone & L. Fernandez, 2006. The economic impacts of aquatic invasive species: a review of the literature. Agricultural and Resource Economics Review 35(1): 195–208. https://doi.org/10.1017/S1068280500010157.

    Article  Google Scholar 

  • Lucy, F., A. Karatayev & L. Burlakova, 2012. Predictions for the spread, population density and impacts of Corbicula fluminea in Ireland. Aquatic Invasions 7: 465–474. https://doi.org/10.3391/AI.2012.7.4.003.

    Article  Google Scholar 

  • Lurie-Luke, E., 2014. Product and technology innovation: What can biomimicry inspire? Biotechnology Advances 32: 1494–1505. https://doi.org/10.1016/j.scitotenv.2015.06.042.

    Article  CAS  PubMed  Google Scholar 

  • Mackie, G. L., 2007. Reproduction and developmental biology. In Mackie, G. L., R. C. Bailey, I. J. Holopainen, D. J. Hornback & C. M. Way (eds), Biology of Freshwater Corbiculid and Sphaeriid Clams of North America. Ohio Biological Survey: 31–54.

  • Mackie, G. L. & R. Claudi, 2010. Monitoring and Control of Macrofouling Mollusks in Fresh Water Systems, CRC Press, Boca Raton: https://doi.org/10.1201/9781439804414.

    Book  Google Scholar 

  • Marchowski, D., Ł Jankowiak & D. Wysocki, 2016. Newly demonstrated foraging method of Herring Gulls and Mew Gulls with benthivorous diving ducks during the nonbreeding period. The Auk 133: 31–40.

    Article  Google Scholar 

  • Marescaux, J., L.-M. Pigneur & K. Van Doninck, 2010. New records of Corbicula clams in French rivers. Aquatic Invasions 5: S35–S39.

    Article  Google Scholar 

  • Martins, I., D. M. P. Castro, D. R. Macedo, R. M. Hughes & M. Callisto, 2021. Anthropogenic impacts influence the functional traits of Chironomidae (Diptera) assemblages in a neotropical savanna river basin. Aquatic Ecology 511: 1081–1095. https://doi.org/10.1007/s10452-021-09884-z.

    Article  Google Scholar 

  • Matthews, M. A. & R. F. McMahon, 1999. Effects of temperature and temperature acclimation on survival of zebra mussels (Dreissena polymorpha) and Asian clams (Corbicula fluminea) under extreme hypoxia. Journal of Molluscan Studies 65: 317–325. https://doi.org/10.1093/mollus/65.3.317.

    Article  Google Scholar 

  • McDowell, W. G., W. H. McDowell & J. E. Byers, 2017. Mass mortality of a dominant invasive species in response to an extreme climate event: Implications for ecosystem function. Limnology and Oceanography 62: 177–188. https://doi.org/10.1002/lno.10384.

    Article  Google Scholar 

  • McDowell, W. G. & R. Sousa, 2019. Mass mortality events of invasive freshwater bivalves: current understanding and potential directions for future research. Frontiers in Ecology and Evolution 7: 331. https://doi.org/10.3389/fevo.2019.00331.

    Article  Google Scholar 

  • McMahon, R., 1982. The occurrence and spread of the introduced Asiatic freshwater clam Corbicula fluminea (Müller), in North America: 1924–1982. Nautilus 96(134): 141.

    Google Scholar 

  • McMahon, R. F., 2000. Invasive characteristics of the freshwater bivalve Corbicula fluminea. In Claudi, R. & J. Leach (eds), Nonindigenous Freshwater Organisms: Vectors, Biology and Impacts Lewis Publishers, Boca Raton: 315–343.

    Google Scholar 

  • McMahon, R. F., 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59: 1235–1244. https://doi.org/10.1139/f02-105.

    Article  Google Scholar 

  • McMahon, R. F. & A. E. Bogan, 2001. Mollusca: Bivalvia. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates Academic Press, San Diego: 321–429.

    Google Scholar 

  • Meijer, T. & R. C. Preece, 2000. A review of the occurrence of Corbicula in the Pleistocene of North-West Europe. Netherlands Journal of Geosciences 79(2–3): 241–255. https://doi.org/10.1017/S0016774600021739.

    Article  Google Scholar 

  • Meira, A., M. Lopes-Lima, S. Varandas, A. Teixeira, F. Arenas & R. Sousa, 2019. Invasive crayfishes as a threat to freshwater bivalves: interspecific differences and conservation implications. Science of the Total Environment 649: 938–948. https://doi.org/10.1016/j.scitotenv.2018.08.341.

    Article  CAS  PubMed  Google Scholar 

  • Meybeck, M., 2003. Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society B Biological Sciences 358: 1935–1955. https://doi.org/10.1098/rstb.2003.1379.

    Article  CAS  PubMed Central  Google Scholar 

  • Mincy, G. A. & M. L. Mckinney, 2019. The Asian Clam Corbicula fluminea as a Pollution Sentinel Species. Journal of Shellfish Research 38(1): 183–190. https://doi.org/10.2983/035.038.0117.

    Article  Google Scholar 

  • Mingsheng, Y., Z. Hucai, L. Bin, C. Fengqin, L. Guoliang & P. Yang, 2011. N-alkanes and Corbicula fossils in shell bar section of the Qarhan Lake, Qaidam Basin and their paleoenvironment significance. Acta Geoscientica Sinica 1: 87–94.

    Google Scholar 

  • Modesto, V., P. Castro, M. Lopes-Lima, C. Antunes, M. Ilarri & R. Sousa, 2019. Potential impacts of the invasive species Corbicula fluminea on the survival of glochidia. Science of the Total Environment 673: 157–164. https://doi.org/10.1016/j.scitotenv.2019.04.043.

    Article  CAS  PubMed  Google Scholar 

  • Modesto, V., E. Dias, M. Ilarri, M. Lopes-Lima, A. Teixeira, S. Varandas, P. Castro, C. Antunes & R. Sousa, 2021. Trophic niche overlap between native freshwater mussels (Order: Unionida) and the invasive Corbicula fluminea. Aquatic Conservation: Marine and Freshwater Ecosystems 31(8): 2058–2071.

    Article  Google Scholar 

  • Modesto, V., M. Ilarri, P. Castro, F. Carvalho, T. Cavalheri, M. Lopes-Lima, A. Teixeira, R. O. A. Ozório, C. Antunes & R. Sousa, 2023. Interspecific differences in the physiological condition of native freshwater mussels in response to the invasive Asian clam Corbicula fluminea. Hydrobiologia: 1–11. https://doi.org/10.1007/s10750-023-05209-3.

  • Morgan, D. E., M. Keser, J. T. Swenarton & J. F. Foertch, 2003. Population dynamics of the Asiatic clam, Corbicula fluminea (Müller) in the Lower Connecticut River: Establishing a foothold in New England. Journal of Shellfish Research 22: 193–203.

    Google Scholar 

  • Morhun, H., M. V. Vinarski, A. M. Labecka, G. van der Velde & M. O. Son, 2022. Differentiation of European invasive clams of the genus Corbicula (Cyrenidae) using shell shape analysis. Journal of Molluscan Studies 88: 45. https://doi.org/10.1093/mollus/eyab045.

    Article  Google Scholar 

  • Morton, B., 1982. Some aspects of the population structure and sexual strategy of Corbicula cf. fluminalis (Bivalvia: Corbiculacea) from the Pearl River, Peoples Republic of China. Journal of Molluscan Studies 48(1): 1–23. https://doi.org/10.1093/oxfordjournals.mollus.a065606.

    Article  Google Scholar 

  • Morton, B., 1986. Corbicula in Asia – an updated synthesis. American Malacological Bulletin 2: 113–124.

    Google Scholar 

  • Mouthon, J., 2001. Life cycle and population dynamics of the Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) in the Saone River at Lyon (France). Hydrobiologia 452: 109–119. https://doi.org/10.1023/A:1011980011889.

    Article  Google Scholar 

  • Müller, O. F., 1774. Vermium terrestrium et fluviatilsum, sen animalium infusorium, helminthicorum, et testaceorum, non marinorum, succincta historia. Testacea Vol. 2. Havnie et Lipsiae: 214.

  • Müller, T., M. Czarnoleski, A. M. Labecka, A. Cichy, K. Zając & D. Dragosz-Kluska, 2015. Factors affecting trematode infection rates in freshwater mussels. Hydrobiologia 742: 59–70. https://doi.org/10.1007/s10750-014-1965-7.

    Article  Google Scholar 

  • Müller, T., A. M. Labecka, K. Zając & M. Czarnoleski, 2021. Growth patterns of the pan-European freshwater mussel, Anodonta anatina (Linnaeus, 1758) (Bivalvia: Unionidae), vary with sex and mortality in populations. Ecology and Evolution 11: 2907–2918. https://doi.org/10.1002/ece3.7250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neck, R. W., 1986. Corbicula in public recreation waters of Texas: habitat spectrum and clam – human interactions. American Malacological Bulletin 2: 179–184.

    Google Scholar 

  • Novais, A., A. T. Souza, M. Ilarri, C. Pascoal & R. Sousa, 2015a. Facilitation in the low intertidal: effects of an invasive species on the structure of an estuarine macrozoobenthic assemblage. Marine Ecology Progress Series 522: 157–167. https://doi.org/10.3354/MEPS11168.

    Article  Google Scholar 

  • Novais, A., A. T. Souza, M. Ilarri, C. Pascoal & R. Sousa, 2015b. From water to land: how an invasive clam may function as a resource pulse to terrestrial invertebrates. SCience of the Total Environment 538: 664–671. https://doi.org/10.1016/j.scitotenv.2015.08.106.

    Article  CAS  PubMed  Google Scholar 

  • Novais, A., A. T. Souza, M. Ilarri, C. Pascoal & R. Sousa, 2016. Effects of the invasive clam Corbicula fluminea (Müller, 1774) on an estuarine microbial community. Science of the Total Environment 566: 1168–1175. https://doi.org/10.1016/j.scitotenv.2016.05.167.

    Article  CAS  PubMed  Google Scholar 

  • Novais, A., C. Pascoal & R. Sousa, 2017a. Effects of invasive aquatic carrion on soil chemistry and terrestrial microbial communities. Biological Invasions 19: 2491–2502. https://doi.org/10.1007/s10530-017-1459-4.

    Article  Google Scholar 

  • Novais, A., D. Batista, F. Cássio, C. Pascoal & R. Sousa, 2017b. Effects of invasive clam (Corbicula fluminea) die-offs on the structure and functioning of freshwater ecosystems. Freshwater Biology 62: 1908–1916. https://doi.org/10.1111/fwb.13033.

    Article  CAS  Google Scholar 

  • Olson, S. D. & J. Janssen, 2017. Early feeding of round goby (Neogobius melanostomus) fry. Journal of Great Lakes Research 43: 728–736. https://doi.org/10.1016/j.jglr.2017.04.006.

    Article  Google Scholar 

  • Park, G.-M. & E.-Y. Chung, 2004. Histological studies on hermaphroditism, gametogenesis and cyclic changes in the structures of marsupial gills of the introduced Asiatic clam, Corbicula fluminea, and the Korean clam, Corbicula leana. Journal of Shellfish Research 23(1): 179–184.

    Google Scholar 

  • Park, J.-K., J.-S. Lee & W. Kim, 2002. A single mitochondrial lineage is shared by morphologically and allozymatically distinct freshwater Corbicula clones. Molecules and Cells 14: 318–322.

    CAS  PubMed  Google Scholar 

  • Park, G.-M., T.-S. Yong, K.-I. Im & E.-Y. Chung, 2000. Karyotypes of three species of Corbicula (Bivalvia: Veneroida) in Korea. Journal of Shellfish Research. 19(2): 979–982.

    Google Scholar 

  • Paunović, M., B. Csanyi, S. Knežević, V. Simić, D. Nenadić, D. Jakovčev-Todorović, B. Stojanović & P. Cakić, 2007. Distribution of Asian clams Corbicula fluminea (Muller, 1774) and C. fluminalis (Muller, 1774) in Serbia. Aquatic Invasions 2(2): 99–106. https://doi.org/10.3391/ai.2007.2.2.3.

    Article  Google Scholar 

  • Pawłowski, Ł, W. J. Lacy, C. G. Uchrin & M. R. Dudzińska, 1998. Chemistry for the Protection of the Environment 3, Springer, Boston, MA:

    Book  Google Scholar 

  • Peng, Y. C., Y. M. Subeq, C. C. Tien & R. P. Lee, 2017. Freshwater clam extract supplementation improves wound healing by decreasing the tumor necrosis factor α level in blood. Journal of the Science of Food and Agriculture 97(4): 1193–1199. https://doi.org/10.1002/jsfa.7849.

    Article  CAS  PubMed  Google Scholar 

  • Pengfei, Z., L. Liuping & L. Deliang, 2019. Rates of feeding, filtration and chlorella removal for Bellamya sp. and Corbicula fluminea. Journal of Hydroecology 5: 63–67.

    Google Scholar 

  • Penk, M. R. & M. A. Williams, 2019. Thermal effluents from power plants boost performance of the invasive clam Corbicula fluminea in Ireland’s largest river. Science of the Total Environment 693: 133546. https://doi.org/10.1016/j.scitotenv.2019.07.352.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, L. J., S. Pinho, A. Ré, P. A. Costa, R. Costa, F. Goncalves & B. B. Castro, 2016. Biological control of the invasive Asian clam, Corbicula fluminea: can predators tame the beast? Hydrobiologia 779: 209–226. https://doi.org/10.1007/s10750-016-2816-5.

    Article  Google Scholar 

  • Pfenninger, M., F. Reinhardt & B. Streit, 2002. Evidence for cryptic hybridization between different evolutionary lineages of the invasive clam genus Corbicula (Veneroida, Bivalvia). Journal of Evolutionary Biology 15: 818–829. https://doi.org/10.1046/j.1420-9101.2002.00440.x.

    Article  CAS  Google Scholar 

  • Phelps, H. L., 1994. The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River estuary near Washington, DC. Estuaries 17: 614–621. https://doi.org/10.2307/1352409.

    Article  Google Scholar 

  • Piechocki, A. & B. Wawrzyniak-Wydrowska, 2016. Guide to freshwater and marine mollusca of Poland. Bogucki Wydawnictwo Naukowe, Poznań: 280.

  • Pigneur, L.-M., J. Marescaux, K. Roland, E. Etoundi, J.-P. Descy & K. Van Doninck, 2011. Phylogeny and androgenesis in the invasive Corbicula clams (Bivalvia, Corbiculidae) in Western Europe. Evolutionary Biology 11: 147. https://doi.org/10.1186/1471-2148-11-147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pigneur, L.-M., S. M. Hedtke, E. Etoundi & K. Van Doninck, 2012. Androgenesis: a review through the study of the selfish shellfish Corbicula spp. Heredity 108: 581–591. https://doi.org/10.1038/hdy.2012.3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pigneur, L.-M., E. Etoundi, D. C. Aldridge, J. Marescaux, N. Yasuda & K. Van Doninck, 2014. Genetic uniformity and long-distance clonal dispersal in the invasive androgenetic Corbicula clams. Molecular Ecology 23: 5102–5116. https://doi.org/10.1111/mec.12912.

    Article  PubMed  Google Scholar 

  • Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002.

    Article  Google Scholar 

  • Pipolo, M., R. C. Martins, R. M. Quinta-Ferreira & R. Costa, 2017. Integrating the Fenton’s Process with Biofiltration by Corbicula fluminea to Reduce Chemical Oxygen Demand of Winery Effluents. Journal of Environmental Quality 46(2): 436–442. https://doi.org/10.2134/jeq2016.09.0338.

    Article  CAS  PubMed  Google Scholar 

  • Piria, M., G. H. Copp, J. T. A. Dick, A. Duplić, Q. Groom, D. Jelić, F. E. Lucy, H. E. Roy, E. Sarat, P. Simonović, T. Tomljanović, E. Tricarico, M. Weinlander, Z. Adámek, S. Bedolfe, N. E. Coughlan, E. Davis, A. Dobrzycka-Krahel, Z. Grgić, ŞG. Kırankaya, F. G. Ekmekçi, J. Lajtner, J. A. Y. Lukas, N. Koutsikos, G. J. Mennen, B. Mitić, P. Pastorino, T. J. Ruokonen, M. E. Skóra, E. R. C. Smith, N. Šprem, A. S. Tarkan, T. Treer, L. Vardakas, T. Vehanen, L. Vilizzi, D. Zanella & J. M. Caffrey, 2017. Tackling invasive alien species in Europe II: threats and opportunities until 2020. Management of Biological Invasions 8: 273–286. https://doi.org/10.3391/mbi.2017.8.3.02.

    Article  Google Scholar 

  • Prashad, B., 1929. Revision of the Asiatic species of the genus Corbicula III. The species of the genus Corbicula from China. South-eastern Russia, Tibet, Formosa and Phillipine Islands. Memoris of the Indian Museum 9: 49–68.

    Google Scholar 

  • Prashad, B., 1930. Revision of the Asiatic species of the genus Corbicula IV. The species of the genus Corbicula from Sunda islands, the Celebes and New Guinea. Memoris of the Indian Museum 9: 193–203.

    Google Scholar 

  • Pulliam, H. R., 2000. On the relationship between niche and distribution. Ecology Letters 3(4): 349–361. https://doi.org/10.1046/j.1461-0248.2000.00143.x.

    Article  Google Scholar 

  • Qigen, L., S. Heding, Z. Hongqi & L. Weimin, 1999. Oxygen consumption and ammonia excretory rate of the freshwater clam, Corbicula fluminea. Jornal of Shanghai Fisheries University 4: 298–303.

    Google Scholar 

  • Qingzhi, W. & C. Yaqing, 2010. Reproductive biology of Asian clam Corbicula fluminea in Dayang River in Liaoning province. Journal of Dalian Fisheries University 1: 8–13.

    Google Scholar 

  • Qiu, A., A. Shi & A. Komaru, 2001. Yellow and brown shell color morphs of Corbicula fluminea (Bivalvia: Corbiculdae) from Sichuan Province, China, are triploids and tetraploids. Journal of Shellfish Research 20(10): 323–328.

    Google Scholar 

  • Rajagopal, S., G. van der Velde & A. bij de Vaate, 2000. Reproductive biology of the Asiatic clams Corbicula fluminalis and Corbicula fluminea in the river Rhine. Archiv Für Hydrobiologie 149: 403–420. https://doi.org/10.1127/archiv-hydrobiol/149/2000/403.

    Article  Google Scholar 

  • Renard, E., V. Bachmann, M. L. Cariou & C. Moreteau, 2000. Morphological and molecular differentiation of invasive freshwater species of the genus Corbicula (Bivalvia, Corbiculidea) suggest the presence of three taxa in French rivers. Molecular Ecology 9: 2009–2016. https://doi.org/10.1046/j.1365-294X.2000.01104.x.

    Article  CAS  PubMed  Google Scholar 

  • Reyna, P., J. Nori, M. L. Ballesteros, A. C. Hued & M. Tatian, 2018. Targeting clams: insights into the invasive potential and current and future distribution of Asian clams. Environmental Conservation 45: 387–395. https://doi.org/10.1017/S0376892918000139.

    Article  Google Scholar 

  • Rong, Y., Y. Tang, L. Ren, W. D. Taylor, V. Razlutskij, L. Naselli-Flores, Z. Liu & X. Zhang, 2021. Effects of the filter-feeding benthic bivalve Corbicula fluminea on plankton community and water quality in aquatic ecosystems: a mesocosm study. Water 13(13): 1827. https://doi.org/10.3390/w13131827.

    Article  CAS  Google Scholar 

  • Rosa, I. C., J. L. Pereira, J. Gomes, P. M. Saraiva, F. Gonçalves & R. Costa, 2011. The Asian clam Corbicula fluminea in the European freshwater-dependent industry: a latent threat or a friendly enemy? Ecological Economics 70(10): 1805–1813. https://doi.org/10.1016/j.ecolecon.2011.05.006.

    Article  Google Scholar 

  • Rosa, I. C., R. Costa, F. Gonçalves & J. L. Pereira, 2014. Bioremediation of metal-rich effluents: could the invasive bivalve Corbicula fluminea work as a biofilter? Journal of Environmental Quality 43(5): 1536–1545. https://doi.org/10.2134/jeq2014.02.0069.

    Article  CAS  PubMed  Google Scholar 

  • Roy, D., D. Alderman, P. Anastasiu, M. Arianoutsou, S. Augustin, S. Bacher, C. Başnou, J. Beisel, S. Bertolino, L. Bonesi, F. Bretagnolle, J. L. Chapuis, B. Chauvel, F. Chiron, P. Clergeau, J. Cooper, T. Cunha, P. Delipetrou, M. Desprez-Loustau, M. Détaint, S. Devin, V. Didžiulis, F. Essl, B. S. Galil, P. Genovesi, F. Gherardi, S. Gollasch, M. Hejda, P. E. Hulme, M. Josefsso, S. Kark, K. Kauhala, M. Kenis, S. Klotz, M. Kobelt, I. Kühn, P. W. Lambdon, T. Larsson, C. Lopez-Vaamonde, O. Lorvelec, H. Marchante, D. Minchin, W. Nentwig, A. Occhipinti-Ambrogi, S. Olenin, I. Olenina, I. Ovcharenko, V. E. Panov, M. Pascal, J. Pergl, I. Perglová, J. Pino, P. Pyšek, W. Rabitsch, J. Rasplus, B. Rathod, A. Roques, H. Roy, D. Sauvard, R. Scalera, T. A. Shiganova, S. Shirley, A. Shwartz, W. Solarz, M. Vilà, M. Winter, P. Yésou, A. Zaiko, T. Adriaens, P. Desmet & L. Reyserhove, 2020. DAISIE - Inventory of alien invasive species in Europe. v1.7. Research Institute for Nature and Forest (INBO). https://ipt.inbo.be/resource?r=daisie-checklist&v=1.7 (accessed May 2022).

  • Saxby, S. A., 2002. A review of food availability, sea water characteristics and bivalve growth performance at coastal culture site in temperate and warm temperate regions of the world, Fisheries Research report n8 132. Western Australia: Department of Fisheries.

  • Schwalb, A. N. & M. T. Pusch, 2007. Horizontal and vertical movements of unionid mussels in a lowland river. Journal of the North American Benthological Society 26(2): 261–272.

  • Seebens, H., T. M. Blackburn, E. E. Dyer, P. Genovesi, P. E. Hulme, J. M. Jeschke, S. Pagad, P. Pyšek, M. Winter, M. Arianoutsou, S. Bacher, B. Blasius, G. Brundu, C. Capinha, L. Celesti-Grapow, W. Dawson, S. Dullinger, N. Fuentes, H. Jäger, J. Kartesz, M. Kenis, H. Kreft, I. Kühn, B. Lenzner, A. Liebhold, A. Mosena, D. Moser, M. Nishino, D. Pearman, J. Pergl, W. Rabitsch, J. Rojas-Sandoval, A. Roques, S. Rorke, S. Rossinelli, H. E. Roy, R. Scalera, S. Schindler, K. Štajerová, B. Tokarska-Guzik, M. van Kleunen, K. Walker, P. Weigelt, T. Yamanaka & F. Essl, 2017. No saturation in the accumulation of alien species worldwide. Nature Communications 8(1): 1–9. https://doi.org/10.1038/ncomms14435.

  • Seebens, H., S. Bacher, T. M. Blackburn, C. Capinha, W. Dawson, S. Dullinger, P. Genovesi, P. E. Hulme, M. van Kleunen, I. Kühn, J. M. Jeschke, B. Lenzner, A. M. Liebhold, Z. Pattison, J. Pergl, P. Pyšek, M. Winter & F. Essl, 2021. Projecting the continental accumulation of alien species through to 2050. Global Change Biology 27(5): 970–982. https://doi.org/10.1111/gcb.15333.

    Article  CAS  Google Scholar 

  • Sheehan, R., J. M. Caffrey, M. Millane, P. McLoone, H. Moran & F. E. Lucy, 2014. An investigation into the effectiveness of mechanical dredging to remove Corbicula fluminea (Muller, 1774) from test plots in an Irish river system. Management of Biological Invasions 5: 407–418. https://doi.org/10.3391/mbi.2014.5.4.11.

    Article  Google Scholar 

  • Sickel, J. B., 1986. Corbicula population mortalities: factors influencing population control. American Malacological Bulletin 2: 89–94.

    Google Scholar 

  • Simberloff, D., J.-L. Martin, J. Aronson, F. Courchamp, B. Galil, E. Garcia-Berthou, P. Genovesi, V. Maris, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi, M. Vilà & D. Wardle, 2013. Impacts of biological invasions-what’s what and the way forward. Trends in Ecology and Evolution 28(1): 58–66. https://doi.org/10.1016/j.tree.2012.07.013.

    Article  PubMed  Google Scholar 

  • Siripattrawan, S., J.-K. Park & D. Ó. Foighl, 2000. Two lineages of the introduced Asian freshwater clam Corbicula occur in North America. Journal of Molluscan Studies 66: 423–429.

    Article  Google Scholar 

  • Skompski, S., 1991. Fauna czwartorzędowa Polski. Bezkręgowce. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa: 239.

  • Skompski, S., 2002. Fauna osadów interglacjalnych z Koczarek koło Mrągowa. Przegląd Zoologiczny 50(7): 615–619.

    Google Scholar 

  • Skuza, L., A. M. Labecka & J. Domagala, 2009. Cytogenetic and morphological characterization of Corbicula fluminalis (O. F. Müller, 1774) (Bivalvia: Veneroida: Corbiculidae): taxonomic status assessment of freshwater clam. Folia Biologica (kraków) 57: 177–185. https://doi.org/10.3409/fb57_3-4.177-18.

    Article  Google Scholar 

  • Sousa, R., C. Antunes & L. Guilhermino, 2006a. Factors influencing the occurrence and distribution of Corbicula fluminea (Müller, 1774) in the River Lima estuary. Annales De Limnologie - International Journal of Limnology 42(3): 165–171. https://doi.org/10.1051/limn/2006017.

    Article  Google Scholar 

  • Sousa, R., S. Dias & C. Antunes, 2006b. Spatial subtidal macrobenthic distribution in relation to abiotic conditions in the Lima estuary, NW of Portugal. Hydrobiologia 559: 135–148. https://doi.org/10.1007/s10750-005-1371-2.

    Article  Google Scholar 

  • Sousa, R., C. Antunes & L. Guilhermino, 2007a. Species composition and monthly variation of the Molluscan fauna in the freshwater subtidal area of the River Minho estuary. Estuarine, Coastal and Shelf Science 75: 90–100. https://doi.org/10.1016/j.ecss.2007.02.020.

    Article  Google Scholar 

  • Sousa, R., R. Freire, M. Rufino, J. Méndez, M. Gaspar, C. Antunes & L. Guilhermino, 2007b. Genetic and shell morphological variability of the invasive bivalve Corbicula fluminea (Müller, 1774) in two Portuguese estuaries. Estuarine, Coastal and Shelf Science 74: 66–74. https://doi.org/10.1016/j.ecss.2007.04.011.

    Article  Google Scholar 

  • Sousa, R., C. Antunes & L. Guilhermino, 2008a. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales De Limnologie - International Journal of Limnology 44: 85–94. https://doi.org/10.1051/limn:2008017.

    Article  Google Scholar 

  • Sousa, R., S. Dias, L. Guilhermino & C. Antunes, 2008b. Minho River tidal freshwater wetlands: threats to faunal biodiversity. Aquatic Biology 3: 237–250. https://doi.org/10.3354/ab00077.

    Article  Google Scholar 

  • Sousa, R., J. L. Gutiérrez & D. C. Aldridge, 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions 11: 2367–2385. https://doi.org/10.1007/s10530-009-9422-7.

    Article  Google Scholar 

  • Sousa, R., P. Morais, C. Antunes & L. Guilhermino, 2008c. Factors affecting Pisidium amnicum (Müller, 1774; Bivalvia: Sphaeriidae) distribution in the River Minho estuary: consequences for its conservation. Estuaries and Coasts 31(6): 1198. https://doi.org/10.1007/s12237-008-9090-3.

    Article  Google Scholar 

  • Sousa, R., A. Novais, R. Costa & D. L. Strayer, 2014. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233–251. https://doi.org/10.1007/s10750-012-1409-1.

    Article  Google Scholar 

  • Sousa, R., A. J. Nogueira, M. B. Gaspar, C. Antunes & L. Guilhermino, 2008d. Growth and extremely high production of the non-indigenous invasive species Corbicula fluminea (Müller, 1774): possible implications for ecosystem functioning. Estuarine, Coastal and Shelf Science 80(2): 289–295. https://doi.org/10.1016/j.ecss.2008.08.006.

    Article  Google Scholar 

  • Sousa, R., M. Rufino, M. Gaspar, C. Antunes & L. Guilhermino, 2008e. Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho Estuary, Portugal. Aquatic Conservation: Marine and Freshwater Ecosystems 18(1): 98–110. https://doi.org/10.1002/aqc.838.

    Article  Google Scholar 

  • Sousa, R., S. Varandas, R. Cortes, A. Teixeira, M. Lopes-Lima, J. Machado & L. Guilhermino, 2012. Massive die-offs of freshwater bivalves as resource pulses. Annales de Limnologie - International Journal of Limnology 48: 105–112. https://doi.org/10.1051/limn/2012003.

    Article  Google Scholar 

  • Sousa, R., S. Varandas, A. Teixeira, M. Ghamizi, E. Froufe & M. Lopes-Lima, 2016. Pearl mussels (Margaritifera marocana) in Morocco: conservation status of the rarest bivalve in African fresh waters. Science of the Total Environment 547: 405–412. https://doi.org/10.1016/j.scitotenv.2016.01.003.

    Article  CAS  PubMed  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51: 1016–1024. https://doi.org/10.1111/j.1365-2427.2006.01547.x.

    Article  CAS  Google Scholar 

  • Su, L., H. Cai, P. Kolandhasamy, C. Wu, C. M. Rochman & H. Shi, 2018. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environmental Pollution 234: 347–355. https://doi.org/10.1016/j.envpol.2017.11.075.

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe, C., C. H. Quinn, C. Shannon, A. Glover & A. M. Dunn, 2018. Exploring the attitudes to and uptake of biosecurity practices for invasive non-native species: views amongst stakeholder organisations working in UK natural environments. Biological Invasions 20: 399–411. https://doi.org/10.1007/s10530-017-1541-y.

    Article  Google Scholar 

  • Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174. https://doi.org/10.1111/j.1365-2427.2009.02380.x.

    Article  Google Scholar 

  • Swinnen, F., M. Leynen, R. Sablon, L. Duvivier & R. Vanmaele, 1998. The Asiatic clam Corbicula (Bivalvia: Corbiculidae) in Belgium. Bulletin de l’institut Royal des Sciences Naturelles de Belgique, Biologie 68: 47–53.

    Google Scholar 

  • Takabe, Y., H. Tsuno, F. Nishimura, Y. Guan, T. Mizuno, C. Matsumura & T. Nakano, 2011. Applicability of Corbicula as a bioindicator for monitoring organochlorine pesticides in fresh and brackish waters. Environmental Monitoring and Assessment 179(1): 47–63.

    Article  CAS  PubMed  Google Scholar 

  • Taskinen, J., M. Urbańska, F. Ercoli, W. Andrzejewski, M. Ożgo, B. Deng, J. M. Choo & N. Riccardi, 2020. Parasites in sympatric populations of native and invasive freshwater bivalves. Hydrobiologia 848(3167): 3178. https://doi.org/10.1007/s10750-020-04284-0.

    Article  CAS  Google Scholar 

  • Tiemann, J. S., A. E. Haponski, S. A. Douglass, T. Lee, K. S. Cummings, M. A. Davis & D. Ó. Foighil, 2017. First record of a putative novel invasive Corbicula lineage discovered in the Illinois River, Illinois, USA. BioInvasions Records 6(2): 159–166. https://doi.org/10.3391/bir.2017.6.2.12.

    Article  Google Scholar 

  • Tiemann, J., C. Lawlis & S. Douglass, 2018. First occurrence of a novel Corbicula (Bivalvia: Corbiculidae) form D lineage in the Ohio River, USA. Nautilus 132(1): 30–32.

    Google Scholar 

  • Tittizer, T. & M. Taxacher, 1997. Erstnachweis von Corbicula fluminea/ fluminalis (Müller, 1774) (Corbiculidae, Mollusca) in der Donau. Lauterbonia 31: 103–107.

    Google Scholar 

  • Torchin, M. E., K. D. Lafferty, A. P. Dobson, V. J. McKenzie & A. M. Kuris, 2003. Introduced species and their missing parasites. Nature 421: 628–630. https://doi.org/10.1038/nature01346.

    Article  CAS  PubMed  Google Scholar 

  • Torres, U., W. Godsoe, H. L. Buckley, M. Parry, A. Lustig & S. P. Worner, 2018. Using niche conservatism information to prioritize hotspots of invasion by non-native freshwater invertebrates in New Zealand. Diversity and Distributions 24(12): 1802–1815. https://doi.org/10.1111/ddi.12818.

    Article  Google Scholar 

  • Tran, D., P. Ciret, A. Ciutat, G. Durrieu & J. C. Massabuau, 2003. Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium. Environmental Toxicology and Chemistry: An International Journal 22(4): 914–920. https://doi.org/10.1002/etc.5620220432.

    Article  CAS  Google Scholar 

  • Tsai, J. S., T. C. Lin, J. L. Chen & B. S. Pan, 2006. The inhibitory effects of freshwater clam (Corbicula fluminea, Muller) muscle protein hydrolysates on angiotensin I converting enzyme. Process Biochemistry 41(11): 2276–2281.

  • Turek, K. A. & T. J. Hoellein, 2015. The invasive Asian clam (Corbicula fluminea) increases sediment denitrification and ammonium flux in 2 streams in the midwestern USA. Freshwater Science 34(2): 472–484. https://doi.org/10.1086/680400.

    Article  Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446. https://doi.org/10.1046/j.1365-2427.2001.00771.x.

    Article  Google Scholar 

  • Vaughn, C. C. & D. E. Spooner, 2006. Scale-dependent associations between native freshwater mussels and invasive Corbicula. Hydrobiologia 568(1): 331–339. https://doi.org/10.1007/s10750-006-0210-4.

    Article  Google Scholar 

  • Vaughn, C. C. & T. J. Hoellein, 2018. Bivalve impacts in freshwater and marine ecosystems. Annual Review of Ecology, Evolution, and Systematics 49: 183–208. https://doi.org/10.1146/annurev-ecolsys-110617-062703.

    Article  Google Scholar 

  • Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27(2): 409–423. https://doi.org/10.1899/07-058.1.

    Article  Google Scholar 

  • Vidal, M.-L., A. Bassères & J.-F. Narbonne, 2002. Seasonal variations of pollution biomarkers in two populations of Corbicula fluminea (Müller). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 131(2): 133–151. https://doi.org/10.1016/S1532-0456(01)00291-5.

    Article  Google Scholar 

  • Viergutz, C., C. Linn & M. Weitere, 2012. Intra-and interannual variability surpasses direct temperature effects on the clearance rates of the invasive clam Corbicula fluminea. Marine Biology 159: 2379–2387.

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. Reidy Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561. https://doi.org/10.1038/nature09440.

    Article  CAS  PubMed  Google Scholar 

  • Ward, J. M. & A. Ricciardi, 2007. Impacts of Dreissena invasions on benthic macroinvertebrate communities: a meta-analysis. Diversity and Distributions 13: 155–165. https://doi.org/10.1111/j.1472-4642.2007.00336.x.

    Article  Google Scholar 

  • Wei, L., H. Yanqing, Z. You & L. Kuanyi, 2021. Effects of temperature and food quality on Corbicula fluminea feeding and excretion in Taihu Lake. Journal of Hydroecology 3: 99–105.

    Google Scholar 

  • Welter-Schultes, F., 2012. European non-marine molluscs, a guide for species identification. Planet Poster Editions, Göttingen: 674.

  • Wen, Z., L. Zhikeng, W. Zujian, L. Qiying & X. Lianhui, 2004. Isolation, purification and property study of active protein CFp-a in Corbicula fluminea. Journal of Fishery Sciences of China 4: 349–353.

    Google Scholar 

  • Werner, S. & K. O. Rothhaupt, 2008. Effects of the invasive Asian clam Corbicula fluminea on benthic macroinvertebrate taxa in laboratory experiments. Archiv Für Hydrobiologie 173(2): 145–152. https://doi.org/10.1127/1863-9135/2008/0173-0145.

    Article  Google Scholar 

  • Wimbush, J. M., E. Frischer, J. W. Zarzynski & S. A. Nierzwicki-Bauer, 2009. Eradication of colonizing populations of zebra mussels (Dreissena polymorpha) by early detection and SCUBA removal: Lake George, NY. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 703–713. https://doi.org/10.1002/aqc.1052.

    Article  Google Scholar 

  • Wittmann, M. E., S. Chandra, J. E. Reuter, A. Caires, S. G. Schladow & M. Denton, 2012a. Harvesting an invasive bivalve in a large natural lake: species recovery and impacts on native benthic macroinvertebrate community structure in Lake Tahoe, USA. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 588–597. https://doi.org/10.1002/aqc.2251.

    Article  Google Scholar 

  • Wittmann, M. E., S. Chandra, J. E. Reuter, S. G. Schladow, B. C. Allen & K. J. Webb, 2012b. The control of an invasive bivalve, Corbicula fluminea, using gas impermeable benthic barriers in a large natural lake. Environmental Management 49: 1163–1173. https://doi.org/10.1007/s00267-012-9850-5.

    Article  PubMed  Google Scholar 

  • Woodruff, D. S., V. Kijviriya & E. S. Upatham, 1993. Genetic relationships among Asian Corbicula: Thai clams are referable to topotypic Chinese Corbicula fluminea. American Malacological Bulletin 10(1): 51–53.

    Google Scholar 

  • Xiangdong, F., S. Baowei & S. Jun, 2021. Experiment of Corbicula fluminea culturing on big water surface. Journal of Aquaculture 11: 60–61.

    Google Scholar 

  • Xiaolong, Z, 2015. Improvement of water quality of Corbicula fluminea to eutrophic water body and its ecological significance. Master Thesis: 1–49.

  • Xu, P., 2002. Distribution and disappearance of Corbicula fluminea and Corbicula sinica in Qionghai, Sichuan province. Journal of Xichang University 4: 95–96.

    Google Scholar 

  • Yan, C., D. Xiaojie, T. Siquan, M. Chao, L. Yong & Z. Zhidong, 2013. Preliminary investigations on the distribution and growth of Corbicula fluminea in the Dianshan Lake of Shanghai. Journal of Shanghai Ocean University 1: 81–87.

    Google Scholar 

  • Yanshan, L., Z. Tongqing, T. Shengkai, L. Daming, L. Xiaowei, M. Huan & H. Yuefeng, 2017. Development and Application of Growth Equations for Corbicula fluminea Population in Hongze Lake. Journal of Hydroecology 4: 82–89.

    Google Scholar 

  • Yeager, M. M., R. J. Neves & D. S. Cherry, 1999. Competitive interactions between early life stages of Villosa iris (Bivalvia: Unionidae) and adult Asian clams (Corbicula fluminea). In Freshwater Mollusk Symposium Proceedings. Ohio Biological Survey, Columbus, Ohio: 253–259.

  • Yeh, K. T., W. T. Wu, Y. M. Subeq, C. C. Niu, K. W. Liao, I. H. Chen & R. P. Lee, 2017. Effects of freshwater clam extract on fracture induced inflammation at early stage. Experimental and Therapeutic Medicine 14(5): 5039–5044. https://doi.org/10.3892/etm.2017.5184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yizheng, W., H. Ling, L. Ruyu & W. Xiaoning, 2010. Protective effect of Hexian decoction on acute ethanol-induced liver injury in mice. Journal of Fujian University of Traditional Chinese Medicine: 28–29.

  • Yulin, Z., W. Yindong & L. Wenxuan, 1997. Study on sex and gonad development of Corbicula fluminea. Journal of Anhui Agricultural Sciences 2: 179–180.

    Google Scholar 

  • Žadin, V.I., 1952. Molljuski presnych i solonowatych vod SSSR, Opredelitieli po faunie SSSR, 46. Izdatelstvo AN SSSR, Moskva-Leningrad: 376.

  • Zhang, L., Q. Shen, H. Hu, S. Shao & C. Fan, 2011. Impacts of Corbicula fluminea on oxygen uptake and nutrient fluxes across the sediment-water interface. Water, Air, and Soil Pollution 220(1–4): 399–411. https://doi.org/10.1007/s11270-011-0763-3.

    Article  CAS  Google Scholar 

  • Zhang, P., 1996. Utilization and cultivation of Corbicula fluminea. Modern Agriculture Research 3: 19.

    CAS  Google Scholar 

  • Zhiying, T., D. Yonghui, L. Caigang, Z. Guifang, D. Liyun & W. Qingzhi, 2016. Embryonic development and postembryonic development of Corbicula fluminea outside Qinglan Lake. Jiangsu Agricultural Sciences 44(10): 305–307.

    Google Scholar 

  • Zieritz, A., R. Sousa, D. C. Aldridge, K. Douda, E. Esteves, N. Ferreira-Rodríguez, J. H. Mageroy, D. Nizzoli, M. Osterling, J. Reis, N. Riccardi, D. Daill, C. Gumpinger & A. S. Vaz, 2022. A global synthesis of ecosystem services provided and disrupted by freshwater bivalve molluscs. Biological Reviews 97(5): 1967–1998. https://doi.org/10.1111/brv.12878.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was conducted within the project River2Ocean—Socio-ecological and biotechnological solutions for the conservation and valorisation of aquatic biodiversity in the Minho Region, with the reference NORTE-01-0145-FEDER-000068, co-financed by the European Regional Development Fund (ERDF), through Programa Operacional Regional do Norte (NORTE 2020). This study was also supported by national funds through FCT—Foundation for Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020 and by the COST Action CA18239, supported by COST (European Cooperation in Science and Technology). VM was supported by doctoral grant SFRH/BD/108298/2015 from the Portuguese Foundation for Science and Technology—FCT through POPH/FSE funds. AML was supported by the Institute of Environmental Sciences, Jagiellonian University (bailout no. N18/DBS/000003). NF-R was supported by a postdoctoral fellowship from the government of the autonomous community of Galicia (Xunta de Galicia, ED481D-2021-023). NEC graciously acknowledges support from the Irish Research Council (GOIPD/2022/861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Modesto.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Handling editor: Sidinei M. Thomaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Manuel P. M. Lopes-Lima, Lyubov E. Burlakova, Ting Hui Ng, Alexandra Zieritz, & Ronaldo G. Sousa / Biology and Impact of Invasive Freshwater Molluscs

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 167 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modesto, V., Ilarri, M., Labecka, A.M. et al. What we know and do not know about the invasive Asian clam Corbicula fluminea. Hydrobiologia (2023). https://doi.org/10.1007/s10750-023-05280-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10750-023-05280-w

Keywords

Navigation